Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change means time is running out for ski resorts built on glaciers

27.11.2003


As the first snowfalls mark the opening of the new skiing season in Europe, glaciologists at the University of Wales, Aberystwyth (UWA) are warning that time may be running out for ski resorts built on glaciers.



Dr Bryn Hubbard of the Centre for Glaciology at UWA is studying the response of some of the world’s most sensitive ice masses to climate change. As part of the work his team is set to study the decay of the Tsanfleuron glacier in Switzerland, home to one of the country’s premier summer ski fields.

Developed to extend the skiing season, Tsanfleuron is one of around half a dozen similar resorts built on glaciers in Switzerland. According to Dr Hubbard, the research carried out to date indicates that the glacier may provide a viable skiing area for only a few decades. By the end of this century the glacier is expected to have shrunk to a quarter of its current size.


Dr Hubbard has been awarded £187,000 by the Natural Environment Research Council and £117,000 from the Higher Education Funding Council for Wales’ Science Research Investment Fund to undertake the work.

Sea level rises
Headlines predicting widespread flooding as a result of rising sea levels caused by global warming have become commonplace over the past two decades. The driving force behind these changes is generally believed to be the increasing level of greenhouse gases, mainly carbon dioxide, in the Earth’s atmosphere. As the level of carbon dioxide mounts ever higher, the Earth warms, and sea levels rise.

Some of this rise, about a half over the past 100 years, is due simply to the water itself warming up and expanding. The other half is due to the melting of the world’s ice masses, the effect of which is to decant large volumes of meltwater into the ocean basins.

However, projections of sea-level rise have fallen over recent years as scientists improve their understanding of how ice flows and melts. In particular, increasingly sophisticated mathematical models that show how glaciers flow and degenerate have led glaciologists to revise down their prediction for the rise in sea level. Current best estimates compiled by the Intergovernmental Panel on Climate Change stand at between 20 and 40 cm over the next 100 years.

Dr Bryn Hubbard has been studying glaciers for the past 15 years. He believes that the phenomenon known to everyone as ‘global warming’ has been proved ‘beyond reasonable doubt’ over the past decade – which includes the nine warmest years the Earth has experienced since detailed records began. However, calculating precisely how these changes translate into sea level rise involves understanding and modelling the precise response of the Earth’s ice masses to global warming.

Dr Hubbard is working on the Tsanfleuron glacier, about 3000m above sea level in the Swiss Alps, heading a project to understand the characteristics of small and responsive mountain glaciers. To do this, Dr Hubbard and his team will be drilling through the glacier and imaging its three-dimensional structure using radars located down those boreholes and at the glacier’s surface – essentially X-raying the glacier in a similar way to medical CT scans, but using radio waves.

Allied with this will be high resolution lab work to look at the crystalline structures of sections of ice taken from the various layers within the glacier. This work will take place at –20°C in a new purpose-built cold room facility which is being developed at Aberystwyth.

From this field and laboratory information the team will gain a better understanding of how the different parts of a glacier will respond to temperature change through time. As a final step in the research programme, they will develop a computer-based numerical model to predict the rate at which Tsanfleuron and glaciers like it will degenerate over the remainder of this century.

And degenerate it does. At the present time the Tsanfleuron glacier is retreating at a rate of 10 to 15 metres every year. This is a major change for a glacier that measures only about 3 kilometres long by 2 or 3 kilometres wide and which flows at about 10 centimetres per day.

Dr Hubbard expects to complete his work on the Tsanfleuron glacier by the summer of 2005 and present his findings in 2006. “Current mathematical models do not reflect real life and the aim of our work is to find out how the various layers within a glacier are formed. Once we understand this we will be able to develop better mathematical models that can more accurately predict the way in which glaciers are likely to flow and melt, and thus their effect on sea level,” he said.

“When we have collected all the data and developed a model the next step is to apply the model to representative glaciers in other parts of the world such as South America, the Arctic and even glaciers flowing from the margins of the Antarctic ice sheet.”

“As more data have been built into these models over the past few years, predictions of changes in sea level have been revised downwards. It will take three years before we are ready to introduce the findings of this research and there is no knowing how they will influence predictions. They could go up or down, but whichever way they move they should be more accurate than those currently available,” he added.

“In the case of the Tsanfleuron glacier, with thousands of pass-paying skiers per day, the financial implications for the owners of a ski resort built on a shrinking glacier may well soon become crystal clear. The rate at which the glacier degenerates will slow down as it recedes up the mountain because temperature drops with elevation. Our computer modelling suggests that this glacier may provide a viable skiing area for only a few decades. If climate change continues at its current rate, the glacier may shrink to around a quarter of its present size in less than 100 years.”

Arthur Dafis | alfa
Further information:
http://www.aber.ac.uk/aberonline/uwa5403.shtml

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>