Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1700 Japan tsunami linked to massive North American quake

21.11.2003


Guided by Japanese writings from an era of shoguns, an international team of scientists today reported new evidence that an earthquake of magnitude 9 struck the northwestern United States and southwestern Canada three centuries ago. Their findings are likely to affect the region’s precautions against future earthquakes and tsunamis.



Writing in the Journal of Geophysical Research-Solid Earth, published by the American Geophysical Union, scientists from Japan, Canada and the United States summarize old reports of flooding and damage by a tsunami in 1700 on the Pacific coast of Japan. With the aid of computer simulations, they conclude that this tsunami must have been generated by a North American earthquake of close to magnitude 9. Such an earthquake would, in a few minutes, release about as much energy as the United States now consumes in a month.

The report’s authors are Kenji Satake, of the Geological Survey of Japan; Kelin Wang, of the Geological Survey of Canada; and Brian Atwater, of the United States Geological Survey, based at the University of Washington in Seattle.


The earthquake apparently ruptured the full length of an enormous fault, known as the Cascadia subduction zone, which extends more than 1,000 kilometers [600 miles] along the Pacific coast from southern British Columbia to northern California. Until the early 1980s, this fault was thought benign by most scientists, said Atwater. But then a swift series of discoveries in North America showed that the fault produces earthquakes of magnitude 8 or larger at irregular intervals, averaging about 500 years. The most recent of the earthquakes, dated by radiocarbon methods, occurred between 1680 and 1720.

These discoveries raised a further question: Can the fault produce earthquakes of magnitude 9? Such a giant earthquake would produce low-frequency shaking, lasting minutes, that might now threaten tall buildings from Vancouver, British Columbia, to northern California. A giant Cascadia earthquake would also warp large areas of seafloor, thereby setting off a train of ocean waves -- a tsunami -- that could prove destructive even on the far side of the Pacific Ocean.

Such international concerns motivated the research described today. "At issue for North Americans," said Atwater, "is how to adjust building codes and tsunami-evacuation plans to reduce losses of life and property in the event of a future magnitude 9 earthquake in southern British Columbia, Washington, Oregon and northern California."

Few scientists took that threat in the Cascadia region seriously until 1996, when Japanese researchers, in a letter to the journal Nature, stunned their North American colleagues by linking a tsunami in Japan to geologic reports of an earthquake and tsunami at the Cascadia subduction zone.

From the tsunami’s arrival time in Japan, the Japanese researchers assigned the earthquake to the evening of Tuesday, January 26, 1700. In addition, from preliminary estimates of the tsunami’s height in Japan, they guessed that it was too large to explain by a Cascadia earthquake of less than magnitude 9.

That guess was on target, according to today’s report in the Journal of Geophysical Research-Solid Earth. The researchers begin by showing that the 1700 tsunami crested as much as five meters [15 feet high] in Japan. They then use recent findings about the Cascadia subduction zone to relate earthquake size to plausible areas of fault rupture and seafloor displacement. Finally, they employ computer simulations of trans-Pacific tsunamis to tune the estimates of earthquake size at Cascadia to the estimated tsunami heights in Japan.

The findings, said Atwater, justify precautions taken recently by engineers and emergency personnel. Under construction standards adopted since 1996, engineers have sought to design buildings to withstand giant earthquakes in the northwestern United States. At the same time, state and local officials have devised evacuation routes from areas believed subject to a tsunami from a Cascadia earthquake of magnitude 9. In Canada, buildings constructed in Vancouver and Victoria since 1985are designed to resist stronger shaking from local earthquakes than is expected from the next Cascadia earthquake. Canada’s 2005 building code will explicitly include the hazard from the subduction zone, said Wang.

Wang also noted that the giant fault responsible for this earthquake is currently "locked," accumulating energy for a future destructive event. "Scientists in the United States, Canada, and Japan are carefully monitoring the fault’s activities using seismological and geodetic methods and making comparisons with a similar fault in southwestern Japan," said Wang. "With a combination of a better understanding of the previous earthquake and modern observations, we hope to better define the potential rupture area of the future event."

Lead author Satake noted that since their first report in 1996 about the possible relationship between the Japanese documents and the American earthquake, the Geological Surveys of the three countries have conducted a joint project on the Cascadia earthquake. "As a result of this international collaboration," he said, "we have collected more evidence, made rigorous interpretation of it, and have modeled the earthquake source and tsunami propagation by using the latest techniques. Consequently, we have confirmed that the 1700 earthquake was magnitude 9."

An animation, prepared by Kenji Satake, which shows hourly snapshots of the simulated tsunami moving across the Pacific Ocean for a full day, may be viewed at ftp://www.agu.org/apend/jb/2003JB002521/2003JB002521-animation.gif

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>