Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic eruptions may affect El Niño onset

20.11.2003


A new study by scientists at the University of Virginia (UVa) in Charlottesville and the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, suggests that explosive volcanic eruptions in the tropics may increase the probability of an El Niño event occurring during the winter following the eruption. The research was funded by the National Science Foundation (NSF).



"The El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual climate variability on the planet," says NCAR scientist Caspar Ammann. "When thinking about long-term climate, we must ask whether this system itself undergoes changes, perhaps in response to changes in radiative forcing or in the background climate itself. Our findings, based on two reconstructions, suggest that it indeed might."

When a volcano erupts in the tropics, its aerosol emissions spread into the stratosphere across the northern and southern hemispheres, reflecting some of the sun’s heat back toward space and thereby cooling the Earth’s atmosphere. This cooling alters the interaction between the oceans and atmosphere, possibly encouraging a warming response in the Pacific Ocean as the massive body of water attempts to restore an initial equilibrium.


"Our results suggest that the atmospheric cooling from an eruption may help nudge the climate system towards producing an El Niño event," said Michael Mann, an environmental scientist at the University of Virginia. The study results will appear in the November 20 issue of the journal Nature.

"This research illustrates the value of paleoclimate studies that draw on research from disparate fields to uncover connections," said David Verardo, director of NSF’s paleoclimate program, which funded the research. "Studies of modern climate conditions gleaned from thermometers and barometers can only get you so far. Challenging the conventional wisdom, as this research does, is necessary to achieve a comprehensive understanding of Earth’s climate," he said.

Some scientists had previously noted that during the 20th century, El Niño events–the periodic warming of sea surface temperatures in the equatorial Pacific–tended to follow the eruption of volcanoes in the tropics. But that 100-year period, the only time span for which reliable instrumental records were kept, was considered too short a duration to substantiate a link between the two phenomena. The connection was thought to be coincidental. "So we turned to the paleoarchives for a longer history," Mann said. "We actually didn’t expect the relationship to hold up in the long run."

The scientists instead found that, when looking back over a 350-year period, as far back as paleorecords allow, there was credible evidence that volcanic activity in the tropics may play a significant role in the occurrence of El Niño events. "We now have a long record showing that the relationship between volcanic eruptions and an increased probability of El Niño events continues to hold up over several centuries," Mann said. "It’s probably not just a fluke."

Mann, Ammann, and UVa scientist Brad Adams used the paleoclimate records stored in ice cores, corals, and tree ring records to reconstruct El Niño events. They used independent ice-core volcanic dust evidence to reconstruct volcanic activity back to the early 1700s.

The paleoclimate records are called ’proxy records’ because they are not direct measurements of current climate and ocean conditions, but instead are reconstructions of past conditions gleaned from the physical, biological, or chemical records or, "signatures," stored in natural archives in the environment. Using these records, the scientists were able to precisely identify the years when eruptions occurred and the years when El Niño events occurred.

When they counted, year by year, the separate events and brought them together for comparison, they found that there was a nearly one-in-two chance that an El Niño event will occur after a volcanic eruption in the tropical zone, roughly double the normal probability. "I wouldn’t call this a tight connection – it’s not a one-to-one relationship," Mann said, "but it appears that the eruption of a tropical volcano nudges the climate towards a more El Niño-like state."

El Niño is a prominent altering factor on world climate, affecting weather patterns for months and years, often causing drought and severe weather in different parts of the world. "We seek to understand how El Niño responds to changes in natural factors such as volcanic activity in part, so we can potentially better understand how El Niño might respond to more recent human influences on climate," Mann said.

Adams added that the findings might help oceanographers and atmospheric scientists to make better probabilistic forecasts of El Niño activity. "This is not a strictly predictive tool, but it may help in anticipating the odds that an El Niño event might occur in a given period," Adams said.


The National Oceanic and Atmospheric Administration also sponsored the research.
NSF Program Contact: Dave Verardo, dverardo@nsf.gov.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

nachricht The significance of seaweed
16.09.2016 | King Abdullah University of Science and Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>