Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of Lava Bubbles Offers New Insight into Seafloor Formation

19.11.2003


Side view of a collapsed lava pit on the East Pacific Rise near 9°50’N at a depth of 2,500 meters (about 8,000 feet). Two lava pillars in the center of the photo support a piece of the upper crust of the lava flow several inches thick.


Underside of a piece of lava from the East Pacific Rise showing drip structures or stalactites. The sample is about eight inches across, with individual lava drips of about one to two inches in length.
Photos ©Woods Hole Oceanographic Institution


Scientists studying the formation of the sea floor thousands of feet below the surface have a new theory for why there are so many holes and collapsed pits on the ocean bottom. In a recent article in the journal Nature, the researchers say the holes and pits of various sizes are probably formed by lava erupting onto the seafloor so quickly it traps water beneath it, forming bubbles of steam that eventually collapse as the water cools. The hardened crust then breaks, forming pock marks and glassy black plates of ocean crust with stalactites on their underside.

Findings by scientists at the Woods Hole Oceanographic Institution (WHOI) and colleagues may help explain the chemical differences between some seafloor lavas and increase understanding of deep-sea volcanic processes. The report also offers new insights into microbes living inside the ocean crust, an area known as the deep biosphere. No one has witnessed an undersea volcanic eruption, although researchers diving in the three-person submersible ALVIN have visited sites of very recent eruptions that were colonized almost immediately by exotic life forms.

Geologists Daniel Fornari and Deborah Smith of WHOI, along with lead author Michael Perfit of the University of Florida and colleagues from the University of Leeds in the United Kingdom, University of Hawaii and the US Geological Survey, report that up to now, scientists thought there was very little interaction between the very cold sea water at the ocean floor several miles deep and the molten lava that erupts to form new crust. Geologists didn’t think the lava, despite reaching temperatures well over 2,000 degrees Fahrenheit, could heat the seawater enough to form steam because of the intense pressure at such great depth.



Based on evidence from hardened lava samples collected during ALVIN dives at the East Pacific Rise off the Pacific coast of Mexico, they now believe that lava erupts so quickly onto the seafloor that it traps seawater under the flow, heats that water into steam to form bubbles that rise up through the lava flow to its top. These steam bubbles, much like the blobs in a lava lamp, are trapped under a relatively thin glassy outer crust.

Inside these bubbles, stalactites of molten lava drip from the crust and become coated with exotic minerals. WHOI Geomicrobiologist Katrina Edwards and graduate student Cara Santelli have noticed that many of the iron rich minerals observed in the lava samples through microscopic analysis are consistent with the iron oxide minerals that are formed in laboratory cultures. Edwards says this could suggest that sometime after formation and cooling, the glassy crusts are colonized and acted on by iron-oxidizing bacteria, and therefore support a subsurface biosphere.

Fornari says these new findings are important to understanding lava formation because the steam has the potential to change the chemistry of the lava, and the presence of bubbles of steam likely affects the way the lava flows across the sea floor. As a result of the steam interaction, lava flows may extend much farther along and across the crest of the mid-ocean ridge, a mountain range circling the earth like the seams on a baseball, forming a shell hundreds of feet thick covering more than half of the planet.

Woods Hole Oceanographic Institution (WHOI) is a private, independent marine research and engineering and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution operates the US National Deep Submergence Facility that includes the deep-diving submersible ALVIN, a fleet of global ranging ships and smaller coastal vessels, and a variety of other tethered and autonomous underwater vehicles. WHOI is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu/media/LavaBubbles.html

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>