Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stay south of thunderstorm paths, says Purdue scientist


Damaging winds can occur in previously overlooked places within a thunderstorm, according to a Purdue University earth scientist. The finding could help meteorologists save lives and reduce injuries by issuing more accurate storm warnings.

Based on new data on the behavior of winds in developing storms, Purdue’s Robert J. "Jeff" Trapp has found that the north side of a storm front can host cyclonic winds that are more intense than those at the storm’s "apex," or leading point, which is generally thought to usher in the strongest winds. These newly found whirlpools of wind can be miles wide and create gusts reaching 100 miles per hour.

"On average, whatever lies in the path of the apex suffers wind damage," said Trapp, who is an associate professor of earth science in Purdue’s School of Science. "However, it’s not the whole story. Meteorologists should be aware of these other vortices in order to present the full picture of a storm front."

The study appears in this month’s Monthly Weather Review. It was co-authored by Morris Weisman of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., where the team conducted computer simulations that contributed to their research.

Using a supercomputer at NCAR, the team initially set out to look at the tornadoes that can form along a front’s leading edge, often called the squall line. These tornadoes are particularly dangerous because of how difficult they are to predict. But what the researchers found in their simulations were much larger vortices that can form at the squall line north of the apex.

"If you’ve watched a weather program’s time-lapse animation of a storm’s development, you’ve seen a squall line as a long, generally north-to-south bank of precipitation," Trapp said. "While the edges of these fronts can resemble straight lines at first, as storms grow in strength a front can look more like a boomerang, with the storm’s apex forming the ’point.’"

Trapp said it is north of this "point" that the vortices generally develop.

"These strong, spinning winds can do great damage over large areas," Trapp said. "They are not tornadoes themselves, but tornadoes can develop from them. We plan to research how this happens as well."

The vortices form only on the north side of the apex because of the spinning of the earth, which tends to deter vortices from forming on the south side.

"The effect of this force, called the Coriolis force, is usually neglected in discussions of thunderstorms," Trapp said. "But out work shows that it is critical to the formation of the damaging vortices in squall lines."

After seeing the vortices form in the simulation, Trapp, Weisman and numerous colleagues across the country observed them in many storms in the Midwest during a recent field program called BAMEX. Trapp said he thinks the reason these vortices have been overlooked in the past is because tracks of storm damage are seldom related back to weather radar images, particularly Doppler radar images, which can indicate the presence of vortices. Special data collected during the BAMEX program will provide Trapp and his colleagues the opportunity to do just that.

Trapp said existing technology could be modified to predict this newly found danger.

"The Doppler radars in use around the U.S., known as ’Nexrads,’ can be used to detect these vortices," he said. "It’s just a matter of adapting the computer software that sorts through the Nexrad data to this problem."

The next step for Trapp and Weisman is to head back to the simulator and attempt to create more sophisticated computer models of the vortices.

"We still have a lot to learn," he said. "Our explanations need to be modified to take into account all the possible real-world factors that we neglected in our initial models. Until we have more specific answers, the most useful thing we can do is simply make meteorologists aware of what could happen and tell them to be on the lookout for it."

This study was funded in part by a grant from the National Science Foundation and by the National Severe Storms Laboratory.

Writer: Chad Boutin, (765) 494-2081,
Source: Robert "Jeff" Trapp, (765) 496-6661,

Chad Boutin | Purdue News
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>