Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stay south of thunderstorm paths, says Purdue scientist

18.11.2003


Damaging winds can occur in previously overlooked places within a thunderstorm, according to a Purdue University earth scientist. The finding could help meteorologists save lives and reduce injuries by issuing more accurate storm warnings.



Based on new data on the behavior of winds in developing storms, Purdue’s Robert J. "Jeff" Trapp has found that the north side of a storm front can host cyclonic winds that are more intense than those at the storm’s "apex," or leading point, which is generally thought to usher in the strongest winds. These newly found whirlpools of wind can be miles wide and create gusts reaching 100 miles per hour.

"On average, whatever lies in the path of the apex suffers wind damage," said Trapp, who is an associate professor of earth science in Purdue’s School of Science. "However, it’s not the whole story. Meteorologists should be aware of these other vortices in order to present the full picture of a storm front."


The study appears in this month’s Monthly Weather Review. It was co-authored by Morris Weisman of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., where the team conducted computer simulations that contributed to their research.

Using a supercomputer at NCAR, the team initially set out to look at the tornadoes that can form along a front’s leading edge, often called the squall line. These tornadoes are particularly dangerous because of how difficult they are to predict. But what the researchers found in their simulations were much larger vortices that can form at the squall line north of the apex.

"If you’ve watched a weather program’s time-lapse animation of a storm’s development, you’ve seen a squall line as a long, generally north-to-south bank of precipitation," Trapp said. "While the edges of these fronts can resemble straight lines at first, as storms grow in strength a front can look more like a boomerang, with the storm’s apex forming the ’point.’"

Trapp said it is north of this "point" that the vortices generally develop.

"These strong, spinning winds can do great damage over large areas," Trapp said. "They are not tornadoes themselves, but tornadoes can develop from them. We plan to research how this happens as well."

The vortices form only on the north side of the apex because of the spinning of the earth, which tends to deter vortices from forming on the south side.

"The effect of this force, called the Coriolis force, is usually neglected in discussions of thunderstorms," Trapp said. "But out work shows that it is critical to the formation of the damaging vortices in squall lines."

After seeing the vortices form in the simulation, Trapp, Weisman and numerous colleagues across the country observed them in many storms in the Midwest during a recent field program called BAMEX. Trapp said he thinks the reason these vortices have been overlooked in the past is because tracks of storm damage are seldom related back to weather radar images, particularly Doppler radar images, which can indicate the presence of vortices. Special data collected during the BAMEX program will provide Trapp and his colleagues the opportunity to do just that.

Trapp said existing technology could be modified to predict this newly found danger.

"The Doppler radars in use around the U.S., known as ’Nexrads,’ can be used to detect these vortices," he said. "It’s just a matter of adapting the computer software that sorts through the Nexrad data to this problem."

The next step for Trapp and Weisman is to head back to the simulator and attempt to create more sophisticated computer models of the vortices.

"We still have a lot to learn," he said. "Our explanations need to be modified to take into account all the possible real-world factors that we neglected in our initial models. Until we have more specific answers, the most useful thing we can do is simply make meteorologists aware of what could happen and tell them to be on the lookout for it."

This study was funded in part by a grant from the National Science Foundation and by the National Severe Storms Laboratory.


Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Robert "Jeff" Trapp, (765) 496-6661, jtrapp@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/031117.Trapp.vortex.html

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>