Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stay south of thunderstorm paths, says Purdue scientist

18.11.2003


Damaging winds can occur in previously overlooked places within a thunderstorm, according to a Purdue University earth scientist. The finding could help meteorologists save lives and reduce injuries by issuing more accurate storm warnings.



Based on new data on the behavior of winds in developing storms, Purdue’s Robert J. "Jeff" Trapp has found that the north side of a storm front can host cyclonic winds that are more intense than those at the storm’s "apex," or leading point, which is generally thought to usher in the strongest winds. These newly found whirlpools of wind can be miles wide and create gusts reaching 100 miles per hour.

"On average, whatever lies in the path of the apex suffers wind damage," said Trapp, who is an associate professor of earth science in Purdue’s School of Science. "However, it’s not the whole story. Meteorologists should be aware of these other vortices in order to present the full picture of a storm front."


The study appears in this month’s Monthly Weather Review. It was co-authored by Morris Weisman of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., where the team conducted computer simulations that contributed to their research.

Using a supercomputer at NCAR, the team initially set out to look at the tornadoes that can form along a front’s leading edge, often called the squall line. These tornadoes are particularly dangerous because of how difficult they are to predict. But what the researchers found in their simulations were much larger vortices that can form at the squall line north of the apex.

"If you’ve watched a weather program’s time-lapse animation of a storm’s development, you’ve seen a squall line as a long, generally north-to-south bank of precipitation," Trapp said. "While the edges of these fronts can resemble straight lines at first, as storms grow in strength a front can look more like a boomerang, with the storm’s apex forming the ’point.’"

Trapp said it is north of this "point" that the vortices generally develop.

"These strong, spinning winds can do great damage over large areas," Trapp said. "They are not tornadoes themselves, but tornadoes can develop from them. We plan to research how this happens as well."

The vortices form only on the north side of the apex because of the spinning of the earth, which tends to deter vortices from forming on the south side.

"The effect of this force, called the Coriolis force, is usually neglected in discussions of thunderstorms," Trapp said. "But out work shows that it is critical to the formation of the damaging vortices in squall lines."

After seeing the vortices form in the simulation, Trapp, Weisman and numerous colleagues across the country observed them in many storms in the Midwest during a recent field program called BAMEX. Trapp said he thinks the reason these vortices have been overlooked in the past is because tracks of storm damage are seldom related back to weather radar images, particularly Doppler radar images, which can indicate the presence of vortices. Special data collected during the BAMEX program will provide Trapp and his colleagues the opportunity to do just that.

Trapp said existing technology could be modified to predict this newly found danger.

"The Doppler radars in use around the U.S., known as ’Nexrads,’ can be used to detect these vortices," he said. "It’s just a matter of adapting the computer software that sorts through the Nexrad data to this problem."

The next step for Trapp and Weisman is to head back to the simulator and attempt to create more sophisticated computer models of the vortices.

"We still have a lot to learn," he said. "Our explanations need to be modified to take into account all the possible real-world factors that we neglected in our initial models. Until we have more specific answers, the most useful thing we can do is simply make meteorologists aware of what could happen and tell them to be on the lookout for it."

This study was funded in part by a grant from the National Science Foundation and by the National Severe Storms Laboratory.


Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Robert "Jeff" Trapp, (765) 496-6661, jtrapp@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/031117.Trapp.vortex.html

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>