Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some large Pacific Northwest quakes could be limited in size by their location

14.11.2003


Large, deep earthquakes have shaken the central Puget Sound region several times in the last century, and nerves have been rattled even more often by less-powerful deep quakes. New University of Washington research suggests the magnitude of these temblors might depend on just where beneath the Earth’s surface they occur.



Events such as the 2001 Nisqually earthquake and large quakes in 1965 and 1949 happened in what is called the Wadati-Benioff zone, an area deep below the surface where the Juan de Fuca tectonic plate is sliding eastward beneath the North American plate. The two plates first meet on the ocean floor off the coast of Washington, Oregon and British Columbia.

If it turns out that such earthquakes are confined to the uppermost part of the Juan de Fuca plate, in its crustal layer, that means the magnitude of such quakes probably is limited to about 7, said Kenneth Creager, a University of Washington Earth and space sciences professor. However, the plate’s crust is only about 3 miles thick, and the cold mantle layer that lies just beneath is much thicker, so a quake that occurs in both layers, in theory, could reach a magnitude of 8, he said.


For a more-detailed examination than previously possible, new tools were devised to analyze data from an experiment called Seismic Hazards Investigations in Puget Sound, or SHIPS. Leiph Preston, now a post-doctoral researcher at the University of Nevada, Reno, created the tools as part of his doctoral research at the UW.

Preston is the lead author of a paper detailing the new analysis published in the Nov. 14 edition of the journal Science. Co-authors are Creager; Robert Crosson, also a UW Earth and space sciences professor; Thomas Brocher with the U.S. Geological Survey in Menlo Park, Calif.; and Anne Tréhu of Oregon State University. The work was funded by the USGS and the National Science Foundation.

In 1998, the SHIPS experiment measured airgun explosions in Puget Sound and the Strait of Juan de Fuca. The detonations generated seismic waves that rebounded from underground structures and then were measured by 200 seismic recorders to generate a subsurface picture.

The boundary between the crust and the mantle in the Juan de Fuca plate created a natural reflector for the sound waves, Preston said, which helped establish a precise location for the boundary. When the depths of various earthquakes were superimposed, it turned out those east of the Olympic Mountains, where the reflector’s depth reaches about 30 miles, occurred mainly in the Juan de Fuca plate’s crust. Quakes west of the Olympics, where the reflector is shallower, occur primarily below it in the plate’s mantle.

"The earthquakes and the reflector are so close to each other that it’s taken us five years to be confident of this interpretation," Creager said.

The crust is largely composed of basalt, but when the plate reaches a depth of about 30 miles the basalt sheds water and is transformed into a denser rock called eclogite.

"The fluids seem to be the key, as they provide the lubricant that allows the two sides of a fault to slip past each other to produce an earthquake," Creager said.

If such an earthquake occurs both in the crust and the mantle, thus allowing it to reach a greater magnitude, it would pose a bigger risk to the heavily populated Interstate 5 corridor west of the Cascades. A magnitude 8 earthquake releases 30 times more energy than a magnitude 7 event, and even though the Juan de Fuca plate goes deeper into the Earth as it moves to the east, it also gets closer to being directly beneath the population centers of western Washington.

The Nisqually earthquake in 2001, which occurred beneath the Nisqually River delta near Olympia, measured magnitude 6.8, while the 1949 earthquake, also near Olympia, measured 7.1. The 1965 earthquake between Seattle and Tacoma registered 6.5.

Western Washington also can encounter subduction zone earthquakes, which occur infrequently offshore where the two plates come together and could perhaps measure magnitude 9. There also are major faults, such as the Seattle fault, that typically produce much shallower quakes with more pronounced shaking, so a high magnitude could bring widespread damage.

The new understanding of the nature of earthquakes in the Wadati-Benioff zone means more work like the SHIPS experiment is needed farther south, "particularly in the area of the Nisqually delta, where we have experienced these large earthquakes," Crosson said. "That will help us to understand the effects of such earthquakes on the entire region."


For more information, contact Preston at 775-784-1684 or preston@ess.washington.edu; Creager at 206-685-2803 or kcc@ess.washington.edu; Crosson at 206-543-6505 or crosson@u.washington.edu; Brocher at 650-329-4737 or brocher@usgs.gov; or Tréhu at 541-737-2655 or trehu@coas.oregonstate.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>