Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some large Pacific Northwest quakes could be limited in size by their location

14.11.2003


Large, deep earthquakes have shaken the central Puget Sound region several times in the last century, and nerves have been rattled even more often by less-powerful deep quakes. New University of Washington research suggests the magnitude of these temblors might depend on just where beneath the Earth’s surface they occur.



Events such as the 2001 Nisqually earthquake and large quakes in 1965 and 1949 happened in what is called the Wadati-Benioff zone, an area deep below the surface where the Juan de Fuca tectonic plate is sliding eastward beneath the North American plate. The two plates first meet on the ocean floor off the coast of Washington, Oregon and British Columbia.

If it turns out that such earthquakes are confined to the uppermost part of the Juan de Fuca plate, in its crustal layer, that means the magnitude of such quakes probably is limited to about 7, said Kenneth Creager, a University of Washington Earth and space sciences professor. However, the plate’s crust is only about 3 miles thick, and the cold mantle layer that lies just beneath is much thicker, so a quake that occurs in both layers, in theory, could reach a magnitude of 8, he said.


For a more-detailed examination than previously possible, new tools were devised to analyze data from an experiment called Seismic Hazards Investigations in Puget Sound, or SHIPS. Leiph Preston, now a post-doctoral researcher at the University of Nevada, Reno, created the tools as part of his doctoral research at the UW.

Preston is the lead author of a paper detailing the new analysis published in the Nov. 14 edition of the journal Science. Co-authors are Creager; Robert Crosson, also a UW Earth and space sciences professor; Thomas Brocher with the U.S. Geological Survey in Menlo Park, Calif.; and Anne Tréhu of Oregon State University. The work was funded by the USGS and the National Science Foundation.

In 1998, the SHIPS experiment measured airgun explosions in Puget Sound and the Strait of Juan de Fuca. The detonations generated seismic waves that rebounded from underground structures and then were measured by 200 seismic recorders to generate a subsurface picture.

The boundary between the crust and the mantle in the Juan de Fuca plate created a natural reflector for the sound waves, Preston said, which helped establish a precise location for the boundary. When the depths of various earthquakes were superimposed, it turned out those east of the Olympic Mountains, where the reflector’s depth reaches about 30 miles, occurred mainly in the Juan de Fuca plate’s crust. Quakes west of the Olympics, where the reflector is shallower, occur primarily below it in the plate’s mantle.

"The earthquakes and the reflector are so close to each other that it’s taken us five years to be confident of this interpretation," Creager said.

The crust is largely composed of basalt, but when the plate reaches a depth of about 30 miles the basalt sheds water and is transformed into a denser rock called eclogite.

"The fluids seem to be the key, as they provide the lubricant that allows the two sides of a fault to slip past each other to produce an earthquake," Creager said.

If such an earthquake occurs both in the crust and the mantle, thus allowing it to reach a greater magnitude, it would pose a bigger risk to the heavily populated Interstate 5 corridor west of the Cascades. A magnitude 8 earthquake releases 30 times more energy than a magnitude 7 event, and even though the Juan de Fuca plate goes deeper into the Earth as it moves to the east, it also gets closer to being directly beneath the population centers of western Washington.

The Nisqually earthquake in 2001, which occurred beneath the Nisqually River delta near Olympia, measured magnitude 6.8, while the 1949 earthquake, also near Olympia, measured 7.1. The 1965 earthquake between Seattle and Tacoma registered 6.5.

Western Washington also can encounter subduction zone earthquakes, which occur infrequently offshore where the two plates come together and could perhaps measure magnitude 9. There also are major faults, such as the Seattle fault, that typically produce much shallower quakes with more pronounced shaking, so a high magnitude could bring widespread damage.

The new understanding of the nature of earthquakes in the Wadati-Benioff zone means more work like the SHIPS experiment is needed farther south, "particularly in the area of the Nisqually delta, where we have experienced these large earthquakes," Crosson said. "That will help us to understand the effects of such earthquakes on the entire region."


For more information, contact Preston at 775-784-1684 or preston@ess.washington.edu; Creager at 206-685-2803 or kcc@ess.washington.edu; Crosson at 206-543-6505 or crosson@u.washington.edu; Brocher at 650-329-4737 or brocher@usgs.gov; or Tréhu at 541-737-2655 or trehu@coas.oregonstate.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>