Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic and Antarctic Sea Ice Marching to Different Drivers

11.11.2003


Average Arctic Sea Ice Extent in September, 1973 to 1976

These figures show averages of Arctic sea ice extent for four Septembers, from 1973 to 1976. Credit: Don Cavalieri, NASA GSFC


Average Arctic Sea Ice Extent in September, 1999 to 2002



These figures show averages of Arctic sea ice extent for four Septembers, from 1999 to 2002. Credit: Don Cavalieri, NASA GSFC


A 30-year satellite record of sea ice in the two polar regions reveals that while the Northern Hemisphere Arctic ice has melted, Southern Hemisphere Antarctic ice has actually increased in more recent years. However, due to dramatic losses of Antarctic sea ice between 1973 and 1977, sea ice in both hemispheres has shrunk on average when examined over the 30-year time frame.

This study presents the longest continuous record of sea ice for both hemispheres based primarily on satellites, and the longer reading already begins to highlight some new information about sea ice trends over time, like the fact that more recently the Arctic has been losing ice at a faster rate.

"If you compare the rate of loss in the Arctic for the last two decades, it is 20 percent greater than the rate of loss over the last three decades," said Don Cavalieri, lead author of the study, and a senior researcher at NASA’s Goddard Space Flight Center. The study appeared in a recent issue of Geophysical Research Letters.



Over 30 years, from 1972 to 2002, the Arctic sea ice cover decreased per decade by roughly the size of the state of Arizona, some 300,000 square kilometers (almost 116,000 square miles) per decade. However, between 1979 and 2002 the sea ice area shrunk by the greater rate of 360,000 square kilometers (139,000 square miles) per decade.

The greater rate of sea ice loss in the Arctic may be due to a general warming trend in the Arctic as well as the influence of long-term oscillations or other changes in atmospheric pressure systems, which could pull in more warm air from the south.

In contrast, there was a dramatic loss of Antarctic sea ice cover from 1973 to 1977, and since then the ice has gradually spread in area.

"The increase has been slow enough that it does not totally wipe out the earlier decreases," said Claire Parkinson, senior researcher at NASA’s Goddard Space Flight Center, and a co-author of the paper. Another co-author is Konstantin Y. Vinnikov, of the department of meteorology at the University of Maryland, College Park.

Overall, from 1972 to 2002, the Antarctic ice declined on average by 150,000 square kilometers per decade (almost 58,000 square miles).

In the Antarctic, the gradual advance of ice from the late 1970s may be related to long-term atmospheric oscillations in the Southern Hemisphere resulting in stronger westerly winds and cooler temperatures.

"Trying to explain why these things happen becomes tricky," said Parkinson. "The temperature connection where warmer temperatures lead to greater melt is reasonably direct, but far from the complete story. Winds and waves move ice around, and consequently the ice can move to places where it is warm enough that it wouldn’t have formed."

While the study represents the longest continuous record comparing the two polar regions, there was a major gap in the satellite sea ice data between early 1977 and late 1978. This gap was filled by maps of sea ice created from ship and other reports in polar areas and conveyed to the National Ice Center.

The study uses satellite data from NASA’s Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR), NASA’s Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), and the Defense Meteorological Satellite Program Special Sensor Microwave Imagers (SSMIs). The Nimbus 5 ESMR data covered from December 1972 to March 1977, with the Nimbus 7 SMMR combined with the Defense Program’s SSMIs picking up data from October 1978 to December 2002. For the year and a half in between 1977 and 1978, the researchers used data and maps from the National Ice Center.

"The National Ice Center all along created operational maps of sea ice cover to help ships in the region trying to navigate around or through the ice," Parkinson said. These maps, while not as comprehensive as satellite data, had to be created every week, using the best data available at the time. The researchers figured it was the most accurate data to bridge the gap between the satellite records.

Previously, NASA scientists had blended the SMMR and SSMI data sets together to generate a 20-year time series of sea ice extents from 1979 to 1998.

By having a 30 year record, the researchers have a much longer baseline to see the trends in both the Arctic and the Antarctic, and they can see seemingly unusual events like the rapid loss of ice in Antarctica in the mid-70s.

"It seems the two regions are responding to different hemispheric variations," said Cavalieri. "What remains is to sift out and understand how these variations are driving the sea ice in each hemisphere."

Contact: Krishna Ramanujan
Goddard Space Flight Center, Greenbelt, Md.
(Phone: 607/273-2561)


Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/feature/2003/1105ice.html

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>