Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s most alkaline life forms found near Chicago

05.11.2003


Sometimes the most extreme environment for life isn’t at the bottom of the ocean or inside a volcano. It’s just south of Chicago.

Illinois groundwater scientists have found microbial communities thriving in the slag dumps of the Lake Calumet region of southeast Chicago where the water can reach extraordinary alkalinity of pH 12.8. That’s comparable to caustic soda and floor strippers -- far beyond known naturally occurring alkaline environments.

The closest known relatives of some of the microbes are in South Africa, Greenland and the alkaline waters of Mono Lake, California.



"Other alkaline communities have been found at pHs up to 11," says Illinois State Water Survey hydrogeologist George Roadcap. "That’s sort of the high end of known natural communities."

Roadcap and his colleagues at the University of Illinois Champaign Urbana came upon the microbes while studying contaminated groundwater created by more than a century of industrial iron slag dumping in southern Illinois and northern Indiana. Roadcap will present details of what appear to be the most alkaline-tolerant life known to date on Tuesday, Nov. 4 at the annual meeting of the Geological Society of America in Seattle, WA.

Genetic analyses at one site revealed bacteria related to Clostridium and Bacillus species. These are found in highly alkaline waters of Mono Lake, tufa columns in Greenland, and cement-contaminated groundwater in a deep gold mine in Africa. Some RNA sequences appeared most closely related to thermophilic, or "heat loving," bacteria found in other parts of the world. The temperatures of the slag dumps are not extraordinary at all, of course. In fact they get pretty cold in the winter, driving the pH even higher, says Roadcap.

At five other sites the dominant microbes belonged to the Proteobacteria class including a large number from the Comamonadacea family of the beta subclass. "In high-pH microcosms experiments, one of these microbes is closely related to a hydrogen oxidizer," said Roadcap. That means the bacteria exploits the hydrogen given off from the corrosion of metallic iron slag in water.

Just how the unusual bacteria got to the slag dumps is currently a mystery, says Roadcap. "I’d hate to hazard a guess," he said, regarding their origins. One possibility is that local bacteria adapted to the extreme environment over the last century. Another possibility is that they somehow got imported.

As for whether the unexpected microbial community has any effect on the extensive groundwater contamination problem in the slag dumps, "We have not come to any conclusion about that," says Roadcap. Among the possible harmful things microbes could do is collect and distribute hazardous materials to nearby lakes and wetlands. But so far that has not been documented.

Alkaline groundwater in the Lake Calumet region was created when steel slag was dumped and used to fill in wetlands and lakes. Water and air reacts with the slag to create lime (calcium hydroxide), driving up the pH. There is an estimated 21 trillion cubic feet of contaminated industrial fill dumped in southeast Illinois and northeast Indiana, about half of which is thought to be slag, Roadcap noted. The slag dumps where the microbial communities were found resembled filled wetlands and are often devoid of surface vegetation, he explained.

Ann Cairns | EurekAlert!
Further information:
http://www.sws.uiuc.edu
http://www.geosociety.org

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>