Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s most alkaline life forms found near Chicago

05.11.2003


Sometimes the most extreme environment for life isn’t at the bottom of the ocean or inside a volcano. It’s just south of Chicago.

Illinois groundwater scientists have found microbial communities thriving in the slag dumps of the Lake Calumet region of southeast Chicago where the water can reach extraordinary alkalinity of pH 12.8. That’s comparable to caustic soda and floor strippers -- far beyond known naturally occurring alkaline environments.

The closest known relatives of some of the microbes are in South Africa, Greenland and the alkaline waters of Mono Lake, California.



"Other alkaline communities have been found at pHs up to 11," says Illinois State Water Survey hydrogeologist George Roadcap. "That’s sort of the high end of known natural communities."

Roadcap and his colleagues at the University of Illinois Champaign Urbana came upon the microbes while studying contaminated groundwater created by more than a century of industrial iron slag dumping in southern Illinois and northern Indiana. Roadcap will present details of what appear to be the most alkaline-tolerant life known to date on Tuesday, Nov. 4 at the annual meeting of the Geological Society of America in Seattle, WA.

Genetic analyses at one site revealed bacteria related to Clostridium and Bacillus species. These are found in highly alkaline waters of Mono Lake, tufa columns in Greenland, and cement-contaminated groundwater in a deep gold mine in Africa. Some RNA sequences appeared most closely related to thermophilic, or "heat loving," bacteria found in other parts of the world. The temperatures of the slag dumps are not extraordinary at all, of course. In fact they get pretty cold in the winter, driving the pH even higher, says Roadcap.

At five other sites the dominant microbes belonged to the Proteobacteria class including a large number from the Comamonadacea family of the beta subclass. "In high-pH microcosms experiments, one of these microbes is closely related to a hydrogen oxidizer," said Roadcap. That means the bacteria exploits the hydrogen given off from the corrosion of metallic iron slag in water.

Just how the unusual bacteria got to the slag dumps is currently a mystery, says Roadcap. "I’d hate to hazard a guess," he said, regarding their origins. One possibility is that local bacteria adapted to the extreme environment over the last century. Another possibility is that they somehow got imported.

As for whether the unexpected microbial community has any effect on the extensive groundwater contamination problem in the slag dumps, "We have not come to any conclusion about that," says Roadcap. Among the possible harmful things microbes could do is collect and distribute hazardous materials to nearby lakes and wetlands. But so far that has not been documented.

Alkaline groundwater in the Lake Calumet region was created when steel slag was dumped and used to fill in wetlands and lakes. Water and air reacts with the slag to create lime (calcium hydroxide), driving up the pH. There is an estimated 21 trillion cubic feet of contaminated industrial fill dumped in southeast Illinois and northeast Indiana, about half of which is thought to be slag, Roadcap noted. The slag dumps where the microbial communities were found resembled filled wetlands and are often devoid of surface vegetation, he explained.

Ann Cairns | EurekAlert!
Further information:
http://www.sws.uiuc.edu
http://www.geosociety.org

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>