Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocks could reveal secrets of life on Earth – and Mars

09.10.2003


A new UK project could help detect evidence for life on Mars, as well as improve our understanding of how it evolved on Earth.



The aim is to develop a technique that can identify biomolecules in water that have been trapped in rocks for millions to billions of years.

As well as analysing samples from Earth, the proposed technique could be used to obtain important information from water sealed within rock samples brought back from Mars, for example. The team will also consider how the technique could be miniaturised for incorporation into spacecraft which travel to other planets.


The three-year initiative will be carried out by geologists and bioengineers at the University of Aberdeen and the University of Glasgow, with funding from the UK’s Engineering and Physical Sciences Research Council.

The research will explore significant technological challenges at the interface between the physical sciences and engineering. These include microfluidic methods for sample pre-concentration (ie the extraction and handling of exceptionally small amounts of fluid), single molecule detection technologies to locate very small amounts of biomaterials and the elimination of contaminants.

The project is highly innovative, attempting to access a source of biomolecules that has not been tapped before. Analysis of material dating from the time before the Earth’s fossil record became extensive is a major project aim. This could significantly enhance our knowledge of the development of life on Earth.

The initiative is being led by Dr John Parnell of the University of Aberdeen’s Geology and Petroleum Geology Department, in collaboration with Professor Jonathan Cooper of the University of Glasgow’s Department of Electronics and Electrical Engineering. Dr. Parnell says: “If the technology proves successful, it will enable us to take advantage of a new source of information about the history of life on Earth, and potentially on other planets too”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>