Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Icesat’s Lasers Measure Ice, Clouds and Land Elevations

07.10.2003


Sky Image at Bonneville
As part of the calibration of ICESat, scientists and engineers from the Center for Space Research at the University of Texas at Austin photographed ICESat laser pulses in the sky and on the ground at Bonneville Salt Flats, Utah on Tuesday September 30, 2003. The series of near-circular green spots in the sky picture are caused by the green-laser pulses from GLAS illuminating thin clouds or aerosols in the atmosphere. The spots, captured in an 8-second camera exposure, are separated by about 170 meters and by less than 3 hundredths of a second. In a clear sky, the laser light from the satellite would appear as a bright green star. The white streak parallel to the green spots is from lights on an aircraft used to photograph both the infrared and green laser spots on the ground. The small white spots are stars. Credit: NASA/University of Texas


Byrd Glacier, shown in a radar image from RADARSAT -1 (top), is the largest outlet glacier draining ice from the East Antarctic Ice Sheet through the Trans-Antarctic Mountains into the Ross Ice Shelf. The ice sheet is grounded on bedrock and the ice shelf is floating on the ocean. Two ICESat profiles across the glacier show details of the troughs formed on the sides of the glacier as it plows into the ice shelf. The differences between the elevations and widths of the glacier at the inner (red) profile and the outer (black) profile show how the glacier thins and spreads as it merges with the ice shelf. With time, ICESat’s measurements of small changes in the elevations of the ice sheets, outlet glaciers, and ice shelves will provide information on whether the rate of ice discharge into the ocean is increasing or decreasing and thus influencing sea level. Credit: NASA


NASA’s Ice, Cloud and land Elevation Satellite (ICESat) has resumed measurements of the Earth’s polar ice sheets, clouds, mountains and forests with the second of its three lasers. Crisscrossing the globe at nearly 17,000 miles per hour, this new space mission is providing data with unprecedented accuracy on the critical third dimension of the Earth, its vertical characteristics.

"The first set of laser measurements is revealing features of the polar ice sheets with details never seen before, and is detecting dust storms, cloud heights, tree heights and smoke from forest fires in new and exciting ways," said Jay Zwally, ICESat Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

The principal mission of ICESat is to measure the surface elevation of the large ice sheets covering Antarctica and Greenland. Measurements of elevation-change over time will show whether the ice sheets are melting or growing as the Earth’s climate undergoes natural and human-induced changes.



The Geoscience Laser Altimeter System (GLAS) instrument on ICESat sends short pulses of green and infrared light though the sky 40 times a second, all over the globe, and collects the reflected laser light in a one-meter telescope. The elevation of the Earth’s surface and the heights of clouds and aerosols in the atmosphere are calculated from both precise measurements of the travel time of the laser pulses, and ancillary measurements of the satellite’s orbit and instrument orientation. This marks the first time any satellite has made vertical measurements of the Earth through the use of an onboard light source.

Operating in a near-polar orbit, ICESat is adding to our understanding of the mass-balance of the Greenland and Antarctic ice sheets. ICESat’s first topographic profiles across Antarctica revealed details of features such as the ice streams of the Siple Coast and the Amery Ice Shelf, as well as the atmospheric phenomena above them.

ICESat is also making unique measurements of cloud heights and global distribution. ICESat detects distributions of aerosols from sources such as dust storms and forest fires. And because its laser pulses continuously, ICESat also measures the Earth’s topography with high accuracy.

"ICESat has already demonstrated the unique capability of lasers to make a variety of Earth Science measurements. When the calibration experiments are completed, we believe the accuracy and sensitivity will exceed previous capabilities by nearly an order of magnitude," stated Bob Schutz, GLAS Science Team Leader, of the University of Texas at Austin.

ICESat was launched January 12, 2003, on a Boeing Delta II rocket from Vandenberg Air Force Base, Calif. On March 29, ICESat’s Laser 1 unexpectedly stopped working after providing 36 days of data. NASA will issue a report shortly on the reason for the anomaly.

"Despite the problem with the first laser, ICESat is providing a new perspective on elements within the Earth System with amazing accuracy. We are especially looking forward to the information this capability will provide on how the polar ice sheets are changing," said Waleed Abdalati, ICESat Program Scientist at NASA Headquarters, Washington.

The ICESat scientists will convene a special session to present the latest results from ICESat at the 2003 Fall Meeting of the American Geophysical Union in San Francisco.

ICESat is the latest in a series of NASA’s Earth observation spacecraft designed to study the environment of our home planet and how it may be changing. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Cynthia M. O’Carroll | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0920icesatfirst.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>