Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Icesat’s Lasers Measure Ice, Clouds and Land Elevations

07.10.2003


Sky Image at Bonneville
As part of the calibration of ICESat, scientists and engineers from the Center for Space Research at the University of Texas at Austin photographed ICESat laser pulses in the sky and on the ground at Bonneville Salt Flats, Utah on Tuesday September 30, 2003. The series of near-circular green spots in the sky picture are caused by the green-laser pulses from GLAS illuminating thin clouds or aerosols in the atmosphere. The spots, captured in an 8-second camera exposure, are separated by about 170 meters and by less than 3 hundredths of a second. In a clear sky, the laser light from the satellite would appear as a bright green star. The white streak parallel to the green spots is from lights on an aircraft used to photograph both the infrared and green laser spots on the ground. The small white spots are stars. Credit: NASA/University of Texas


Byrd Glacier, shown in a radar image from RADARSAT -1 (top), is the largest outlet glacier draining ice from the East Antarctic Ice Sheet through the Trans-Antarctic Mountains into the Ross Ice Shelf. The ice sheet is grounded on bedrock and the ice shelf is floating on the ocean. Two ICESat profiles across the glacier show details of the troughs formed on the sides of the glacier as it plows into the ice shelf. The differences between the elevations and widths of the glacier at the inner (red) profile and the outer (black) profile show how the glacier thins and spreads as it merges with the ice shelf. With time, ICESat’s measurements of small changes in the elevations of the ice sheets, outlet glaciers, and ice shelves will provide information on whether the rate of ice discharge into the ocean is increasing or decreasing and thus influencing sea level. Credit: NASA


NASA’s Ice, Cloud and land Elevation Satellite (ICESat) has resumed measurements of the Earth’s polar ice sheets, clouds, mountains and forests with the second of its three lasers. Crisscrossing the globe at nearly 17,000 miles per hour, this new space mission is providing data with unprecedented accuracy on the critical third dimension of the Earth, its vertical characteristics.

"The first set of laser measurements is revealing features of the polar ice sheets with details never seen before, and is detecting dust storms, cloud heights, tree heights and smoke from forest fires in new and exciting ways," said Jay Zwally, ICESat Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

The principal mission of ICESat is to measure the surface elevation of the large ice sheets covering Antarctica and Greenland. Measurements of elevation-change over time will show whether the ice sheets are melting or growing as the Earth’s climate undergoes natural and human-induced changes.



The Geoscience Laser Altimeter System (GLAS) instrument on ICESat sends short pulses of green and infrared light though the sky 40 times a second, all over the globe, and collects the reflected laser light in a one-meter telescope. The elevation of the Earth’s surface and the heights of clouds and aerosols in the atmosphere are calculated from both precise measurements of the travel time of the laser pulses, and ancillary measurements of the satellite’s orbit and instrument orientation. This marks the first time any satellite has made vertical measurements of the Earth through the use of an onboard light source.

Operating in a near-polar orbit, ICESat is adding to our understanding of the mass-balance of the Greenland and Antarctic ice sheets. ICESat’s first topographic profiles across Antarctica revealed details of features such as the ice streams of the Siple Coast and the Amery Ice Shelf, as well as the atmospheric phenomena above them.

ICESat is also making unique measurements of cloud heights and global distribution. ICESat detects distributions of aerosols from sources such as dust storms and forest fires. And because its laser pulses continuously, ICESat also measures the Earth’s topography with high accuracy.

"ICESat has already demonstrated the unique capability of lasers to make a variety of Earth Science measurements. When the calibration experiments are completed, we believe the accuracy and sensitivity will exceed previous capabilities by nearly an order of magnitude," stated Bob Schutz, GLAS Science Team Leader, of the University of Texas at Austin.

ICESat was launched January 12, 2003, on a Boeing Delta II rocket from Vandenberg Air Force Base, Calif. On March 29, ICESat’s Laser 1 unexpectedly stopped working after providing 36 days of data. NASA will issue a report shortly on the reason for the anomaly.

"Despite the problem with the first laser, ICESat is providing a new perspective on elements within the Earth System with amazing accuracy. We are especially looking forward to the information this capability will provide on how the polar ice sheets are changing," said Waleed Abdalati, ICESat Program Scientist at NASA Headquarters, Washington.

The ICESat scientists will convene a special session to present the latest results from ICESat at the 2003 Fall Meeting of the American Geophysical Union in San Francisco.

ICESat is the latest in a series of NASA’s Earth observation spacecraft designed to study the environment of our home planet and how it may be changing. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Cynthia M. O’Carroll | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0920icesatfirst.html

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>