Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use satellite to ’pond-er’ melted Arctic ice

06.10.2003


NASA researchers and other scientists used a satellite combined with aircraft video to create a new technique for detecting ponds of water on top of Arctic sea ice. Until now, it was not possible to accurately monitor these ponds on ice from space.



Water that forms on sea ice during the summer, called a melt pond, absorbs the Sun’s energy rather than reflecting it back to space the way ice does. The balance between reflected and absorbed energy has a large effect on Arctic and global climate. When more ponds of water form on the Arctic sea ice cover in early summer, more heat is absorbed, causing the Arctic’s sea ice cover to melt faster during the summer. Knowledge of when and where these melt ponds form will help scientists calculate the balance of energy in the Arctic and improve their knowledge and projections of climate both regionally and globally.

By using detailed aircraft video of Arctic surfaces and comparing those with coarser satellite imagery, the researchers were able to recognize rough features in the satellite data that corresponded to ponds on ice, ocean water, and un-melted sea ice. Now, they are able to use a satellite to monitor sea ice, without the aid of the aircraft video. Satellites offer the advantages of frequent regular flyovers that cover vast areas all at once.


"Our new technique offers the possibility of determining when and mapping where these melt ponds form and would greatly aid our understanding of the Arctic heat balance," said co-author Donald Cavalieri, a senior research scientist at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md. An article describing the new technique appeared in a recent issue of the journal, Remote Sensing of Environment.

During spring and summer, these melt ponds cause existing sea ice to melt faster and greatly reduce the ice’s ability to reflect sunlight. This can create a positive feedback, where an increasing number of melt ponds absorbs more heat and causes sea ice cover to melt even faster.

During the warmer months, melt ponds can cover up to 50 percent of the Arctic sea ice area. There may be a relationship between the fraction of melt ponds and the amount of sea ice cover at summer’s end. Researchers know from satellite records covering the last 30-years that the Arctic sea ice cover at summer’s end has been decreasing rapidly. This new technique may help them determine whether there has also been an increase in the number of melt ponds over this period.

This new technique to detect melt pond coverage uses NASA’s Enhanced Thematic Mapper Plus (ETM+) instrument on the Landsat 7 satellite, developed with the aid of much higher resolution video imagery from a NASA supported aircraft experiment during the summer of 2000.

"This result is an excellent example of how the coordinated use of satellites and research aircraft are used to develop new techniques for observing the Earth," Cavalieri added.

By using video footage from an aircraft flight at an altitude of almost one and a half kilometers, the researchers were able to compare that higher resolution footage with Landsat 7 images passing over the same path above Baffin Bay in the Arctic on the same day. They then compared the Landsat imagery with the aircraft video.

While Landsat 7 shows less detail, it covers vast areas all at once. The aircraft video, on the other hand, allows researchers to view a 1.5 meter area in detail.

By classifying 13 high resolution images from the aircraft into areas of ocean, ice with ponds, and pond-free ice and then comparing these areas with the different wavelength bands of Landsat, the researchers were able to develop a new method to calculate the extent of open water, melt ponds, and sea ice over large areas using Landsat data by itself.

"Previously there were no systematic measurements of melt ponds, but this technique with the Landsat creates the possibility of determining when and where these melt ponds form," Cavalieri said. "It helps us understand the heat balance, which ties into the global climate system."



Lead author Thorsten Markus, who is currently conducting research at sea, is also a scientist at NASA GSFC. Other co-authors include Mark Tschudi, National Center for Atmospheric Research, Boulder, Colo., and Alvaro Ivanoff, Science Systems and Applications, Inc., Lanham, Md.

The study was funded by NASA. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Krishna Ramanujan | GSFC

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>