Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use satellite to ’pond-er’ melted Arctic ice

06.10.2003


NASA researchers and other scientists used a satellite combined with aircraft video to create a new technique for detecting ponds of water on top of Arctic sea ice. Until now, it was not possible to accurately monitor these ponds on ice from space.



Water that forms on sea ice during the summer, called a melt pond, absorbs the Sun’s energy rather than reflecting it back to space the way ice does. The balance between reflected and absorbed energy has a large effect on Arctic and global climate. When more ponds of water form on the Arctic sea ice cover in early summer, more heat is absorbed, causing the Arctic’s sea ice cover to melt faster during the summer. Knowledge of when and where these melt ponds form will help scientists calculate the balance of energy in the Arctic and improve their knowledge and projections of climate both regionally and globally.

By using detailed aircraft video of Arctic surfaces and comparing those with coarser satellite imagery, the researchers were able to recognize rough features in the satellite data that corresponded to ponds on ice, ocean water, and un-melted sea ice. Now, they are able to use a satellite to monitor sea ice, without the aid of the aircraft video. Satellites offer the advantages of frequent regular flyovers that cover vast areas all at once.


"Our new technique offers the possibility of determining when and mapping where these melt ponds form and would greatly aid our understanding of the Arctic heat balance," said co-author Donald Cavalieri, a senior research scientist at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md. An article describing the new technique appeared in a recent issue of the journal, Remote Sensing of Environment.

During spring and summer, these melt ponds cause existing sea ice to melt faster and greatly reduce the ice’s ability to reflect sunlight. This can create a positive feedback, where an increasing number of melt ponds absorbs more heat and causes sea ice cover to melt even faster.

During the warmer months, melt ponds can cover up to 50 percent of the Arctic sea ice area. There may be a relationship between the fraction of melt ponds and the amount of sea ice cover at summer’s end. Researchers know from satellite records covering the last 30-years that the Arctic sea ice cover at summer’s end has been decreasing rapidly. This new technique may help them determine whether there has also been an increase in the number of melt ponds over this period.

This new technique to detect melt pond coverage uses NASA’s Enhanced Thematic Mapper Plus (ETM+) instrument on the Landsat 7 satellite, developed with the aid of much higher resolution video imagery from a NASA supported aircraft experiment during the summer of 2000.

"This result is an excellent example of how the coordinated use of satellites and research aircraft are used to develop new techniques for observing the Earth," Cavalieri added.

By using video footage from an aircraft flight at an altitude of almost one and a half kilometers, the researchers were able to compare that higher resolution footage with Landsat 7 images passing over the same path above Baffin Bay in the Arctic on the same day. They then compared the Landsat imagery with the aircraft video.

While Landsat 7 shows less detail, it covers vast areas all at once. The aircraft video, on the other hand, allows researchers to view a 1.5 meter area in detail.

By classifying 13 high resolution images from the aircraft into areas of ocean, ice with ponds, and pond-free ice and then comparing these areas with the different wavelength bands of Landsat, the researchers were able to develop a new method to calculate the extent of open water, melt ponds, and sea ice over large areas using Landsat data by itself.

"Previously there were no systematic measurements of melt ponds, but this technique with the Landsat creates the possibility of determining when and where these melt ponds form," Cavalieri said. "It helps us understand the heat balance, which ties into the global climate system."



Lead author Thorsten Markus, who is currently conducting research at sea, is also a scientist at NASA GSFC. Other co-authors include Mark Tschudi, National Center for Atmospheric Research, Boulder, Colo., and Alvaro Ivanoff, Science Systems and Applications, Inc., Lanham, Md.

The study was funded by NASA. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Krishna Ramanujan | GSFC

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>