Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use satellite to ’pond-er’ melted Arctic ice

06.10.2003


NASA researchers and other scientists used a satellite combined with aircraft video to create a new technique for detecting ponds of water on top of Arctic sea ice. Until now, it was not possible to accurately monitor these ponds on ice from space.



Water that forms on sea ice during the summer, called a melt pond, absorbs the Sun’s energy rather than reflecting it back to space the way ice does. The balance between reflected and absorbed energy has a large effect on Arctic and global climate. When more ponds of water form on the Arctic sea ice cover in early summer, more heat is absorbed, causing the Arctic’s sea ice cover to melt faster during the summer. Knowledge of when and where these melt ponds form will help scientists calculate the balance of energy in the Arctic and improve their knowledge and projections of climate both regionally and globally.

By using detailed aircraft video of Arctic surfaces and comparing those with coarser satellite imagery, the researchers were able to recognize rough features in the satellite data that corresponded to ponds on ice, ocean water, and un-melted sea ice. Now, they are able to use a satellite to monitor sea ice, without the aid of the aircraft video. Satellites offer the advantages of frequent regular flyovers that cover vast areas all at once.


"Our new technique offers the possibility of determining when and mapping where these melt ponds form and would greatly aid our understanding of the Arctic heat balance," said co-author Donald Cavalieri, a senior research scientist at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md. An article describing the new technique appeared in a recent issue of the journal, Remote Sensing of Environment.

During spring and summer, these melt ponds cause existing sea ice to melt faster and greatly reduce the ice’s ability to reflect sunlight. This can create a positive feedback, where an increasing number of melt ponds absorbs more heat and causes sea ice cover to melt even faster.

During the warmer months, melt ponds can cover up to 50 percent of the Arctic sea ice area. There may be a relationship between the fraction of melt ponds and the amount of sea ice cover at summer’s end. Researchers know from satellite records covering the last 30-years that the Arctic sea ice cover at summer’s end has been decreasing rapidly. This new technique may help them determine whether there has also been an increase in the number of melt ponds over this period.

This new technique to detect melt pond coverage uses NASA’s Enhanced Thematic Mapper Plus (ETM+) instrument on the Landsat 7 satellite, developed with the aid of much higher resolution video imagery from a NASA supported aircraft experiment during the summer of 2000.

"This result is an excellent example of how the coordinated use of satellites and research aircraft are used to develop new techniques for observing the Earth," Cavalieri added.

By using video footage from an aircraft flight at an altitude of almost one and a half kilometers, the researchers were able to compare that higher resolution footage with Landsat 7 images passing over the same path above Baffin Bay in the Arctic on the same day. They then compared the Landsat imagery with the aircraft video.

While Landsat 7 shows less detail, it covers vast areas all at once. The aircraft video, on the other hand, allows researchers to view a 1.5 meter area in detail.

By classifying 13 high resolution images from the aircraft into areas of ocean, ice with ponds, and pond-free ice and then comparing these areas with the different wavelength bands of Landsat, the researchers were able to develop a new method to calculate the extent of open water, melt ponds, and sea ice over large areas using Landsat data by itself.

"Previously there were no systematic measurements of melt ponds, but this technique with the Landsat creates the possibility of determining when and where these melt ponds form," Cavalieri said. "It helps us understand the heat balance, which ties into the global climate system."



Lead author Thorsten Markus, who is currently conducting research at sea, is also a scientist at NASA GSFC. Other co-authors include Mark Tschudi, National Center for Atmospheric Research, Boulder, Colo., and Alvaro Ivanoff, Science Systems and Applications, Inc., Lanham, Md.

The study was funded by NASA. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Krishna Ramanujan | GSFC

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>