Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La Niña Takes Bolivian Andes on a Sedimental Journey

02.10.2003


Rolf Aalto stands on the cracked mud of a sediment deposit along the Mamoré River in Bolivia. The deposit is part of an estimated annual average of 3 billion tons of sediment washed into the Amazon River basin from the Andes Mountains.
Credit: Rolf Aalto/University of Washington

Conventional wisdom says a river’s flood plain builds bit by bit, flood after flood, whenever the stream overflows its banks and deposits new sediment on the flood plain. But for some vast waterways in South America’s Amazon River basin, that wisdom doesn’t hold water, according to scientists funded by the National Science Foundation (NSF). Results of their research are published in the October 2nd issue of the journal Nature.

Seasonal rains wash billions of tons of rock and soil from the Andes Mountains each year. But new evidence suggests that it’s only about once every eight years, when the equatorial climate phenomenon known as La Niña is in full swing, that water rises rapidly enough to move huge amounts of that sediment to the flood plains.

"Because this research provides new insights into fundamental issues of fluvial rates and processes, the results will be applicable to many of the world’s river systems," said Walt Snyder, section head in NSF’s division of earth sciences, which funded the research. "This paper wonderfully underscores that understanding Earth processes is highly dependent on our ability to measure the rates at which the processes occur and the spatial extent of their products."

Rolf Aalto, a University of Washington (UW) geologist and lead author of the Nature paper, uses a lightweight tubelike device to extract core samples of such sediment deposits across the remote, thickly forested and unspoiled flood plains of northern Bolivia. He measures the amount and activity of lead-210, a radioactive isotope produced by the decay of naturally occurring radon. The isotope is deposited on the flood plain by fresh river sediment and by rainfall, and it can be used to date successive layers of sediment, for as long as a century after it is deposited, as the lead-210 decays further.

But when Aalto examined samples from the Beni River, which flows northward from the Andes into a Mississippi-sized Amazon tributary called the Rio Madeira, he was puzzled.

"I wasn’t seeing a signal that looked anything like what I expected from previous studies on other river flood plains. I was befuddled," he said. "I would see a lot of lead-210 on the surface, and then the activity would drop down to an unchanging level of activity for a long way down, until the next big decrease."

The multitude of thin layers and gradually declining lead210 activity he expected to see simply didn’t show up. The reason: A few thick sediment layers were filling most of the core samples. Aalto devised a new dating method to better reflect a more complex flood plain environment, then analyzed new samples that showed similar large deposits at various intervals going back nearly 100 years. Each of the large layers was deposited at a time that correlated with a La Niña event in the equatorial Pacific Ocean. La Niña is the cold phase of the El Niño Southern Oscillation climate phenomenon that now is recognized as having wide affects on weather throughout the Western Hemisphere.

"The whole system is being raised," Aalto said. Sediment is moved and deposited throughout the river system in episodes orchestrated by the El Niño cycle."

Thousands of years ago, the Beni flowed into the Mamore’ near the Andes. But its course has changed many times through the millennia and the main channel now is hundreds of miles away from the Mamore’. Major floods in which a river shifts course don’t happen often on human time scales, but these Bolivian rivers still can migrate large distances during a single flood, he said.

Aalto believes such active channel migration, periodic large sediment deposits on the flood plain and large floods might all be part of the general mechanics of large rivers. However, that theory cannot be fully explored in the United States because few rivers of appreciable size still function naturally. He hopes that studying largely unspoiled rivers such as the Beni and Mamoré will help to build a better understanding of how rivers behave in completely natural conditions, and that understanding can be applied to disturbed river systems in the United States and elsewhere.

"Rivers are the arteries of continents," said Aalto. "And the Beni is about as close to the heart of the Amazon as you can get."

Other authors of the Nature paper are Laurence Maurice Bourgoin and Jean-Loup Guyot of Institut de Recherche pour le Développement (IRD) in France and Brazil, who have conducted extensive field studies in Bolivia and Brazil; Thomas Dunne of the University of California, Santa Barbara; and David Montgomery and Charles Nittrouer, both scientists at UW. The research is funded by NSF and IRD.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/
http://www.nsf.gov/od/lpa

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>