Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat observes resurgent ozone hole

29.09.2003


The latest ESA Earth Observation data show that reports of the demise of the ozone hole appearing annually above Antarctica have been greatly exaggerated.


Chlorine activation measured by MIPAS over the South Pole, 25 Sept. 2003


Comparative ozone hole areas, measured by GOME and MIPAS



The ozone hole is normally at its largest in September, but 2002 saw it at its smallest extent for more than a decade: 40% down on previous years. And a year ago yesterday ongoing satellite measurements of ozone - gathered by the Royal Dutch Meteorological Institute (KNMI) from the Global Ozone Monitoring Experiment (GOME) instrument on ESA’s ERS-2 satellite - showed it splitting in two.

“Using GOME we have gathered global stratospheric ozone data over the last eight years,” said Henk Eskes of KNMI. “And last year we were actually able to accurately predict the split a few days before it happened, as we were operating an ozone forecasting service.”


This dramatic reverse came just two years after the ozone hole had reached a record size – more than 30 million sq km in 2000.

There was speculation that last year’s shrinking hole showed the ozone layer was recovering from damage caused by man-made chemicals including chlorofluorocarbons (CFCs) - in the past used in aerosol cans and refrigerators. But the bad news is that this year’s ozone hole looks much more like the 2000 than the 2002 version.

The latest ozone measurements acquired yesterday by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard Envisat - ESA’s latest Earth Observation spacecraft – show this year’s ozone hole is in no danger of splitting this time, and, with an area of 26 million sq km, is almost as big as the 2000 ozone hole. The Belgian Institute for Space Aeronomy (BIRA-IASB) generated this value-adding MIPAS data based on level 2 products provided by ESA.

MIPAS is a German-built instrument that works by measuring infrared emissions from the Earth’s ’limb’ – the band of atmosphere between planetary surface and empty space, as observed from behind Envisat. Working through day and night, MIPAS can map the atmospheric concentrations of more than 20 trace gases, including ozone as well as the pollutants that attack it. This makes the instrument invaluable in the study of atmospheric chemistry.

Stratospheric ozone absorbs up to 98% of the Sun’s harmful ultraviolet light. But human production of CFCs and other pollutants has led to thinning of this protective ozone layer. The discovery of this fact in the 1980s came as a shock.

“Nobody expected such an outcome,” said Eskes. “The very reason these classes of compounds were used by industry was because they were chemically inert – they did not react with other materials. Now we have learned to expect surprises, and we monitor accordingly.”

What was not anticipated was that when these compounds reach a sufficiently high altitude they are split apart by contact with high-energy UV light, releasing more reactive chemicals – chief among them chlorine. In the presence of high-altitude clouds in the cold air above the South Pole these reactive chemicals break ozone down to form oxygen molecules.

“The result of this discovery was the international Montreal Protocol, which has been very successful,” said Eskes. “Emissions of ozone-destroying compounds have been reduced and their concentration in the atmosphere has stabilised. But they are very long-lived and will stay in place for a long time.”

A single molecule of chlorine can degrade more than 100,000 molecules of ozone. And there are large amounts of them in the air – largely stored within intermediate and inactive ’reservoir’ compounds, but activated by particular meteorological conditions, notably those found above the South Pole in winter.

Current data from MIPAS do show a high level of chlorine activation over Antarctica. The ozone layer is most prone to thinning here because the extreme low temperatures of the long polar night form ice clouds containing chlorine compounds. Then sunshine from the polar spring splits the chlorine into ultra-reactive radicals, which depletes the ozone.

Small ozone holes have also been known to form over the Arctic, but meteorological conditions there prevent the stratospheric temperature dropping enough to cause thinning on an Antarctic scale. The small size of the 2002 Antarctic ozone hole was due to the same reason – unusual wind patterns and warm weather prevented more ice cloud formation. But this year’s measurements show there is little room for complacency on this issue.

“Since the end of the 1990s, there is experimental evidence that the total chlorine loading in the stratosphere is decreasing, but this is a slow process,” observed Dominique Fonteyn of BIRA-IASB. “Superimposed on this is the meteorological variability which this year still allows sufficient chlorine activation over a large area and for a longer period than last year.”

MIPAS will continue to monitor the condition of the ozone layer for the life of the Envisat spacecraft, together with the spacecraft’s other atmospheric instruments: Global Ozone Monitoring by Occultation of Stars (GOMOS) and Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). KNMI has plans to resume its ozone forecasting service using the latter instrument.

And in 2005 the first of the three-spacecraft MetOp operational meteorology system will be launched into polar orbit. MetOp will include a next-generation ozone-monitoring instrument called GOME-2, intended to guarantee continuity of observation of this vital environmental factor well into the following decade.

Claus Zehner | ESA
Further information:
http://www.esa.int/export/esaSA/SEMH5K0P4HD_earth_0.html

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>