Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat observes resurgent ozone hole

26.09.2003


The latest ESA Earth Observation data show that reports of the demise of the ozone hole appearing annually above Antarctica have been greatly exaggerated.



The ozone hole is normally at its largest in September, but 2002 saw it at its smallest extent for more than a decade: 40% down on previous years. And a year ago yesterday ongoing satellite measurements of ozone - gathered by the Royal Dutch Meteorological Institute (KNMI) from the Global Ozone Monitoring Experiment (GOME) instrument on ESA’s ERS-2 satellite - showed it splitting in two.

“Using GOME we have gathered global stratospheric ozone data over the last eight years,” said Henk Eskes of KNMI. “And last year we were actually able to accurately predict the split a few days before it happened, as we were operating an ozone forecasting service.”


This dramatic reverse came just two years after the ozone hole had reached a record size – more than 30 million sq km in 2000.

There was speculation that last year’s shrinking hole showed the ozone layer was recovering from damage caused by man-made chemicals including chlorofluorocarbons (CFCs) - in the past used in aerosol cans and refrigerators. But the bad news is that this year’s ozone hole looks much more like the 2000 than the 2002 version.

The latest ozone measurements acquired yesterday by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard Envisat - ESA’s latest Earth Observation spacecraft – show this year’s ozone hole is in no danger of splitting this time, and, with an area of 26 million sq km, is almost as big as the 2000 ozone hole. The Belgian Institute for Space Aeronomy (BIRA-IASB) generated this value-adding MIPAS data based on level 2 products provided by ESA.

MIPAS is a German-built instrument that works by measuring infrared emissions from the Earth’s ’limb’ – the band of atmosphere between planetary surface and empty space, as observed from behind Envisat. Working through day and night, MIPAS can map the atmospheric concentrations of more than 20 trace gases, including ozone as well as the pollutants that attack it. This makes the instrument invaluable in the study of atmospheric chemistry.

Stratospheric ozone absorbs up to 98% of the Sun’s harmful ultraviolet light. But human production of CFCs and other pollutants has led to thinning of this protective ozone layer. The discovery of this fact in the 1980s came as a shock.

“Nobody expected such an outcome,” said Eskes. “The very reason these classes of compounds were used by industry was because they were chemically inert – they did not react with other materials. Now we have learned to expect surprises, and we monitor accordingly.”

What was not anticipated was that when these compounds reach a sufficiently high altitude they are split apart by contact with high-energy UV light, releasing more reactive chemicals – chief among them chlorine. In the presence of high-altitude clouds in the cold air above the South Pole these reactive chemicals break ozone down to form oxygen molecules.

“The result of this discovery was the international Montreal Protocol, which has been very successful,” said Eskes. “Emissions of ozone-destroying compounds have been reduced and their concentration in the atmosphere has stabilised. But they are very long-lived and will stay in place for a long time.”

A single molecule of chlorine can degrade more than 100,000 molecules of ozone. And there are large amounts of them in the air – largely stored within intermediate and inactive ’reservoir’ compounds, but activated by particular meteorological conditions, notably those found above the South Pole in winter.

Current data from MIPAS do show a high level of chlorine activation over Antarctica. The ozone layer is most prone to thinning here because the extreme low temperatures of the long polar night form ice clouds containing chlorine compounds. Then sunshine from the polar spring splits the chlorine into ultra-reactive radicals, which depletes the ozone.

Small ozone holes have also been known to form over the Arctic, but meteorological conditions there prevent the stratospheric temperature dropping enough to cause thinning on an Antarctic scale. The small size of the 2002 Antarctic ozone hole was due to the same reason – unusual wind patterns and warm weather prevented more ice cloud formation. But this year’s measurements show there is little room for complacency on this issue.

“Since the end of the 1990s, there is experimental evidence that the total chlorine loading in the stratosphere is decreasing, but this is a slow process,” observed Dominique Fonteyn of BIRA-IASB. “Superimposed on this is the meteorological variability which this year still allows sufficient chlorine activation over a large area and for a longer period than last year.”

MIPAS will continue to monitor the condition of the ozone layer for the life of the Envisat spacecraft, together with the spacecraft’s other atmospheric instruments: Global Ozone Monitoring by Occultation of Stars (GOMOS) and Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). KNMI has plans to resume its ozone forecasting service using the latter instrument.

And in 2005 the first of the three-spacecraft MetOp operational meteorology system will be launched into polar orbit. MetOp will include a next-generation ozone-monitoring instrument called GOME-2, intended to guarantee continuity of observation of this vital environmental factor well into the following decade.

Claus Zehner | ESA
Further information:
http://www.esa.int/export/esaSA/SEMH5K0P4HD_earth_0.html

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>