Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton paleontologist produces evidence for new theory on dinosaur extinction

26.09.2003


Princeton geoscientist Gerta Keller has spent the last decade investigating the demise of dinosaurs. Rather than working with dinosaur bones, like these in on the Princeton campus, she conducts research on one-celled organisms.


As a paleontologist, Gerta Keller has studied many aspects of the history of life on Earth. But the question capturing her attention lately is one so basic it has passed the lips of generations of 6-year-olds: What killed the dinosaurs?

The answers she has been uncovering for the last decade have stirred an adult-sized debate that puts Keller at odds with many scientists who study the question. Keller, a professor in Princeton’s Department of Geosciences, is among a minority of scientists who believe that the story of the dinosaurs’ demise is much more complicated than the familiar and dominant theory that a single asteroid hit Earth 65 million years ago and caused the mass extinction known as the Cretacious-Tertiary, or K/T, boundary.

Keller and a growing number of colleagues around the world are turning up evidence that, rather than a single event, an intensive period of volcanic eruptions as well as a series of asteroid impacts are likely to have stressed the world ecosystem to the breaking point. Although an asteroid or comet probably struck Earth at the time of the dinosaur extinction, it most likely was, as Keller says, "the straw that broke the camel’s back" and not the sole cause.



Perhaps more controversially, Keller and colleagues contend that the "straw" -- that final impact -- is probably not what most scientists believe it is. For more than a decade, the prevailing theory has centered on a massive impact crater in Mexico. In 1990, scientists proposed that the Chicxulub crater, as it became known, was the remnant of the fateful dinosaur-killing event and that theory has since become dogma.

Keller has accumulated evidence, including results released this year, suggesting that the Chicxulub crater probably did not coincide with the K/T boundary. Instead, the impact that caused the Chicxulub crater was likely smaller than originally believed and probably occurred 300,000 years before the mass extinction. The final dinosaur-killer probably struck Earth somewhere else and remains undiscovered, said Keller.

These views have not made Keller a popular figure at meteorite impact meetings. "For a long time she’s been in a very uncomfortable minority," said Vincent Courtillot, a geological physicist at Université Paris 7. The view that there was anything more than a single impact at work in the mass extinction of 65 million years ago "has been battered meeting after meeting by a majority of very renowned scientists," said Courtillot.

The implications of Keller’s ideas extend beyond the downfall of ankylosaurus and company. Reviving an emphasis on volcanism, which was the leading hypothesis before the asteroid theory, could influence the way scientists think about the Earth’s many episodes of greenhouse warming, which mostly have been caused by periods of volcanic eruptions. In addition, if the majority of scientists eventually reduce their estimates of the damage done by a single asteroid, that shift in thinking could influence the current-day debate on how much attention should be given to tracking and diverting Earth-bound asteroids and comets in the future.

Keller does not work with big fossils such as dinosaur bones commonly associated with paleontology. Instead, her expertise is in one-celled organisms, called foraminifera, which pervade the oceans and evolved rapidly through geologic periods. Some species exist for only a couple hundred thousand years before others replace them, so the fossil remains of short-lived species constitute a timeline by which surrounding geologic features can be dated.

In a series of field trips to Mexico and other parts of the world, Keller has accumulated several lines of evidence to support her view of the K/T extinction. She has found, for example, populations of pre-K/T foraminifera that lived on top of the impact fallout from Chicxulub. (The fallout is visible as a layer of glassy beads of molten rock that rained down after the impact.) These fossils indicate that this impact came about 300,000 years before the mass extinction.

The latest evidence came last year from an expedition by an international team of scientists who drilled 1,511 meters into the Chicxulub crater looking for definitive evidence of its size and age. Although interpretations of the drilling samples vary, Keller contends that the results contradict nearly every established assumption about Chicxulub and confirm that the Cretaceous period persisted for 300,000 years after the impact. In addition, the Chicxulub crater appears to be much smaller than originally thought -- less than 120 kilometers in diameter compared with the original estimates of 180 to 300 kilometers.

Keller and colleagues are now studying the effects of powerful volcanic eruptions that began more than 500,000 years before the K/T boundary and caused a period of global warming. At sites in the Indian Ocean, Madagascar, Israel and Egypt, they are finding evidence that volcanism caused biotic stress almost as severe as the K/T mass extinction itself. These results suggest that asteroid impacts and volcanism may be hard to distinguish based on their effects on plant and animal life and that the K/T mass extinction could be the result of both, said Keller.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/
http://www.princeton.edu/pr/pwb/03/0922

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>