Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERS-2 peers into Hurricane Isabel’s heart

19.09.2003


As Hurricane Isabel converges on the US East Coast, a veteran ESA spacecraft has provided meteorologists with crucial insights into the underlying pressure system powering the storm.



An entire flotilla of satellites is being kept busy tracking Hurricane Isabel in visible and infrared light, as well as gathering additional measurements of local sea surface temperature, wind and rainfall levels. ESA spacecraft ERS-2 has made the picture more detailed still by discerning the wind speed and direction around the hurricane’s cloud and rain-wracked heart.

ERS-2 instruments include a C-band scatterometer, which works by sending a high-frequency radar pulse down to the ocean, then analysing the pattern of backscatter reflected back again. Scatterometers are particularly useful in measuring wind speed and direction at the sea surface, by detecting signature scatter from ripples on the water caused by wind. ERS-2’s scatterometer is less sensitive than comparable space-based instruments to rain or bad weather, and can gather data both day and night. This makes it invaluable as an early detector of Atlantic storms – especially in the current hurricane season.


The Isabel data was obtained mid-afternoon Wednesday at one of ESA’s ground stations in Gatineau Canada, then rapidly delivered to meteorology offices worldwide. At the Reading-based European Centre for Medium-Range Weather Forecasts (ECMWF), it was analysed against the surface wind pattern predicted by their existing software simulation of Isabel, run on powerful supercomputers.

"The ERS wind data is very valuable to us," said Hans Hersbach of ECMWF. "It shows differences with our analysis, for instance a lack of inward wind flow into the centre. By assimilating the data into our analysis we improve our forecasting skills.

"The ESA scatterometer data was routinely assimilated into our analysis after 1997, until it became no longer available early this century. Now the service has been resumed we are making use of it once more."

ESA’s ERS-2 has been in orbit since 1995, but the service from the scatterometer was interrupted in 2001. A degradation in attitude control prevented access to the data. Meteorologists lost a valuable window on the weather – until this summer, when after two-and-a-half-years of effort, new processing software developed by the Belgian Royal Military Academy (RMA) compensated for the degradation and regained access to scatterometer measurements.

The software algorithm was installed in ground stations at Kiruna in Sweden, Maspalomas in the Canary Islands Gatineau in Canada as well as Frascati in Italy, with an additional installation planned for West Freugh in Scotland. The new service began at the end of August, just in time for Hurricane Isabel’s dramatic arrival.

To maintain future continuity of scatterometer coverage, a new more advanced scatterometer instrument called ASCAT is part of the payload for ESA’s MetOp mission, currently due to launch in 2005.

Inside a hurricane

Hurricanes are large powerful storms that rotate around a central area of extreme low pressure. They arise in warm tropical waters that transfer their heat to the air. The warmed air rises rapidly, in the process creating low pressure at the water surface. Winds begin rushing inwards and upwards around this low-pressure zone.

Currently classed at Category Two on the five-point Saffir-Simpson Hurricane scale, Isabel originated in the eastern Atlantic last week. It is currently moving northwest at only about 24 kilometres an hour but winds within it are rotating at about 160 km per hour. Meteorologists forecast the hurricane will make landfall in North Carolina on Thursday.

Wolfgang Lengert | alfa
Further information:
http://www.esa.int/export/esaSA/SEM4Y70P4HD_earth_0.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>