Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Relatives of Algae Yield New Insights into Role of CO2 in Earth’s Early Atmosphere

18.09.2003


Awareness of the global warming effects of carbon dioxide (CO2) is relatively recent, but the greenhouse gas has been playing a critical role in warming our planet for billions of years, according to University of Maryland geologist Jay Kaufman and Virginia Polytechnic Institute geologist Shuhai Xiao.


The microfossil that indicates high amounts of ancient CO2; in this image, it looks strangely like a human face.
Photo Credit: Shuhai Xiao at Virginia Polytechnic Institute



Their results, which provide the best evidence to date of the age of the Calvin cycle—the photosynthetic cycle by which plants convert light energy and CO2 into cellular tissue—will be published in the September 18 issue of the journal Nature.

The research was funded by the National Science Foundation (NSF), an independent federal agency that supports fundamental research and education across all fields of science and engineering, and by NASA.


"This research is solid indirect evidence of the very high level of atmospheric CO2 in an ancient time period," says Enriqueta Barrera, program director in NSF’s division of earth sciences.

Using samples taken from individual fossils of an ancient relative of algae, Kaufman and Xiao provide the first estimates of the concentration of CO2 in the atmosphere some 1.4 billion years ago. Their study results show that the CO2 concentration at that time was 10 to 200 times higher than today’s levels. The gas therefore likely played a major role in keeping Earth warm, and probably dominated over another greenhouse gas, methane, after the atmosphere and oceans became oxygenated between 2 billion and 2.2 billion years ago.

"The sun was not as luminous then so it did not provide as much light and heat as it does now," said Kaufman. "Our new findings confirm models of how much greenhouse gas was required to keep Earth’s temperature warm enough so the oceans didn’t freeze during this time."

The Proterozoic period—the time period examined by Kaufman and Xiao--began 2.5 billion years ago and ended 543 million years ago. Scientists think many of the far-reaching events in the evolutionary history of our planet occurred during that period, including the appearance of abundant living organisms (probably early single- and multi-celled organisms) and significant oxygen in the atmosphere.

One of the ocean-dwelling organisms producing oxygen during the later Proterozoic period was Dictyosphaera delicata, a microscopic plant not much bigger than the dot in the letter i. To estimate ancient levels of atmospheric CO2, Kaufman and Xiao measured ratios of two different forms, or isotopes, of carbon present in individual microfossils of this plant.

"It was a painstaking process to get individual organisms," Kaufman said. The scientists "were able to take a camel hair brush and, using one hair of the brush, pick up one of these microfossils, which had been removed from its substrate [rock] using hydrofluoric acid, which dissolves the inorganic minerals but not organic matter."

Numerous microscopic samples of fossilized cellular material were knocked out of each organism using high-energy beams of ions from an ion probe. The sample material was analyzed with a mass spectrometer to come up with the results reported.

Kaufman is known for his contributions to research indicating that Earth has been almost entirely covered in ice several times within the last billion years. Kaufman and other scientists believe that each of these "snowball earth" periods were ended by a warming of the Earth resulting from a buildup in the atmosphere of greenhouse gases, particularly carbon dioxide.

-NSF-

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/pr03101.htm

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>