Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Doppler on Wheels" to Intercept Eye of Hurricane Isabel, Future Weather Model Zooms in for Forecast

17.09.2003

Three "Doppler On Wheels" (DOW) mobile radars developed partly at the National Center for Atmospheric Research (NCAR) are heading toward the mid-Atlantic coast to intercept the eye of Hurricane Isabel as the powerful storm hits land. Meanwhile, the nation’s next-generation weather model, developed at NCAR and other labs, is training its electronic "eyes" on a virtual Isabel at NCAR’s supercomputing center in Boulder.

The DOWs will deploy at or near the coast in the direct path of the storm. "From a head-on position," says NCAR affiliate scientist Josh Wurman, "the DOW can collect unprecedented high resolution data and rapid-scan Doppler radar data from inside the eye."

At close range the scans will observe fine-scale but potentially damaging storm features as small as 40-feet across, including wind streaks, gusts and other structures. The DOWs are a collaborative effort between NCAR and the Center for Severe Weather Research. Wurman operates the vehicles through the CSWR, with support primarily from the National Science Foundation.

"This is an exciting opportunity to improve our understanding of the finer scale structure of one of nature’s most powerful phenomena," says Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "Federal support for national centers and university researchers has allowed the nexus of people, tools, and ideas to converge to gain new knowledge about hurricanes."

The newest of the radar systems, called the Rapid-DOW, sends out six radar beams simultaneously. By raking the sky six times faster than traditional single-beam radars, Rapid-DOW can visualize three-dimensional volumes in five-to-ten seconds and observe boundary layer rolls, wind gusts, embedded tornadoes and other phenomena as they evolve.

Back in Boulder, NCAR scientists are running the nation’s future Weather Research and Forecast (WRF) model on NCAR’s IBM "Blue Sky" supercomputer, testing the model’s skill at predicting Isabel’s intensity, structures and track. Operating on a model grid with data points only 4 kilometers (2.5 miles miles) apart, Blue Sky hums with calculations all night as WRF zooms in on Isabel, bringing into focus the storm’s internal structure, including eyewall and rain bands. The result is a high-precision, two-day forecast. In the morning, the model starts over to create a new five-day forecast using a 10-kilometer grid and updated conditions.

NCAR’s primary sponsor, the National Science Foundation (NSF), supported the development of both WRF and the DOW at NCAR. The WRF model is a cooperative effort by NCAR and several federal agencies and military branches.

"It’s an exciting opportunity," says scientist Jordan Powers, a WRF development manager at NCAR. "Resolving a hurricane’s fine scale structures in real time with this next-generation weather model is breaking new ground for forecasters and researchers."

The DOW is pushing technological limits of its own. "The DOW has revolutionized the study of tornadoes and other violent and small scale atmospheric phenomena," says Wurman. The large, spinning, brightly-colored radar dishes have intercepted the eyes of five hurricanes: Fran, Bonnie, Floyd, Georges and Lili. Data from the retired DOW1 resulted in the discovery of entirely new phenomena in hurricanes, called intense boundary layer rolls, which contain the highest and most dangerous wind gusts.

Though Powers won’t be using DOW data for WRF’s forecasts this week, he and others may compare Wurman’s real-world observations with the model results in the future.

NSF Program Officer: Cliff Jacobs, (703) 292-8521, cjacobs@nsf.gov

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>