Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Doppler on Wheels" to Intercept Eye of Hurricane Isabel, Future Weather Model Zooms in for Forecast

17.09.2003

Three "Doppler On Wheels" (DOW) mobile radars developed partly at the National Center for Atmospheric Research (NCAR) are heading toward the mid-Atlantic coast to intercept the eye of Hurricane Isabel as the powerful storm hits land. Meanwhile, the nation’s next-generation weather model, developed at NCAR and other labs, is training its electronic "eyes" on a virtual Isabel at NCAR’s supercomputing center in Boulder.

The DOWs will deploy at or near the coast in the direct path of the storm. "From a head-on position," says NCAR affiliate scientist Josh Wurman, "the DOW can collect unprecedented high resolution data and rapid-scan Doppler radar data from inside the eye."

At close range the scans will observe fine-scale but potentially damaging storm features as small as 40-feet across, including wind streaks, gusts and other structures. The DOWs are a collaborative effort between NCAR and the Center for Severe Weather Research. Wurman operates the vehicles through the CSWR, with support primarily from the National Science Foundation.

"This is an exciting opportunity to improve our understanding of the finer scale structure of one of nature’s most powerful phenomena," says Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "Federal support for national centers and university researchers has allowed the nexus of people, tools, and ideas to converge to gain new knowledge about hurricanes."

The newest of the radar systems, called the Rapid-DOW, sends out six radar beams simultaneously. By raking the sky six times faster than traditional single-beam radars, Rapid-DOW can visualize three-dimensional volumes in five-to-ten seconds and observe boundary layer rolls, wind gusts, embedded tornadoes and other phenomena as they evolve.

Back in Boulder, NCAR scientists are running the nation’s future Weather Research and Forecast (WRF) model on NCAR’s IBM "Blue Sky" supercomputer, testing the model’s skill at predicting Isabel’s intensity, structures and track. Operating on a model grid with data points only 4 kilometers (2.5 miles miles) apart, Blue Sky hums with calculations all night as WRF zooms in on Isabel, bringing into focus the storm’s internal structure, including eyewall and rain bands. The result is a high-precision, two-day forecast. In the morning, the model starts over to create a new five-day forecast using a 10-kilometer grid and updated conditions.

NCAR’s primary sponsor, the National Science Foundation (NSF), supported the development of both WRF and the DOW at NCAR. The WRF model is a cooperative effort by NCAR and several federal agencies and military branches.

"It’s an exciting opportunity," says scientist Jordan Powers, a WRF development manager at NCAR. "Resolving a hurricane’s fine scale structures in real time with this next-generation weather model is breaking new ground for forecasters and researchers."

The DOW is pushing technological limits of its own. "The DOW has revolutionized the study of tornadoes and other violent and small scale atmospheric phenomena," says Wurman. The large, spinning, brightly-colored radar dishes have intercepted the eyes of five hurricanes: Fran, Bonnie, Floyd, Georges and Lili. Data from the retired DOW1 resulted in the discovery of entirely new phenomena in hurricanes, called intense boundary layer rolls, which contain the highest and most dangerous wind gusts.

Though Powers won’t be using DOW data for WRF’s forecasts this week, he and others may compare Wurman’s real-world observations with the model results in the future.

NSF Program Officer: Cliff Jacobs, (703) 292-8521, cjacobs@nsf.gov

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>