Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites sample hurricane ’ingredients’ to help forecasters

11.09.2003


The Atlantic Ocean becomes a meteorological mixing bowl from June 1 to November 30, replete with all needed ingredients for a hurricane recipe. NASA turns to its cadre of satellites to serve up a feast of information to the forecasters who seek to monitor and understand these awesome storms.



Typically, during the peak of hurricane season, from late August to mid-September, tropical cyclones of interest to U.S. coastal regions form around the Cape Verde Islands off Africa. NASA satellites are critical for helping forecasters determine if all of the ingredients are coming together to create a hurricane. If a hurricane forms, it is critical to know how strong it may be, which coastal communities or sea lanes will be at risk.

NASA provides researchers and forecasters with space-based observations, data assimilation, and computer climate modeling. NASA sponsored measurements and modeling of global sea surface temperature, precipitation, winds and sea surface height have also improved understanding of El Nino and La Nina events, which respectively tend to suppress and enhance Atlantic and Gulf hurricane development.


Thirty years ago, meteorologists were unable to see the factors in hurricane formation and could only spot a hurricane with still pictures from the TIROS-N satellite. Over the past 10 years, visible and infrared satellite sensors were the workhorses for monitoring hurricanes. Today, multiple NASA satellites exploit everything from radar pulses to microwaves to enhance forecasts, providing data to researchers several times a day.

The first ingredient in the hurricane recipe is sea surface temperature of at least 82 F. Unlike traditional infrared satellite instruments, the Aqua satellite’s Advanced Microwave Scanning Radiometer (AMSR-E) and the Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager can detect sea surface temperatures through clouds. This valuable information can help determine if a tropical cyclone is likely to strengthen or weaken. The Jason-1 satellite altimeter provides data on sea surface height, a key measurement of ocean energy available to encourage and sustain hurricanes.

Another necessary ingredient is rotating winds over the ocean’s surface, precursors to tropical cyclone development. The NASA provided SeaWinds instruments aboard Japan’s Midori 2 and NASA’s QuikSCAT satellites can detect these winds before other instruments, providing even earlier notice of developing storms to forecasters and scientists.

Air temperature and humidity are also important factors. The Atmospheric Infrared Sounder (AIRS) experiment suite aboard the Aqua satellite obtains measurements of global temperature and humidity throughout the atmosphere. This may lead to improve weather forecasts, improved determination of cyclone intensity, location and tracks, and the severe weather associated with storms, such as damaging winds.

Rainfall intensity is the final ingredient, and the Precipitation Radar provided by Japan for the TRMM satellite provides CAT scan-like views of rainfall in the massive thunderstorms of hurricanes. TRMM instruments probe young tropical systems for rainfall intensity and the likelihood of storm development. TRMM also sees "hot towers" or vertical columns of rapidly rising air that indicate very strong thunderstorms. These towers are like powerful pistons that convert energy from water vapor into a powerful wind and rain-producing engine. Once a storm develops, TRMM provides an inside view of how organized and tightly spiraled rain bands are, key indicators of storm intensity.

TRMM provides tropical cyclone intensity information from the safe distance of space allowing the National Oceanic and Atmospheric Administration’s (NOAA) National Hurricane Center and the Department of Defense Joint Typhoon Warning Center to turn to TRMM, QuikSCAT and other NASA satellites for early assessment of storms in the open ocean. The hurricane monitoring capabilities enabled by these satellites are funded by NASA’s Earth Science Enterprise, which is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Rob Gutro | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0909hurricane.html

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>