Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In tropics, forests are cool but croplands are hotter

22.08.2003


Satellite View of Santa Cruz, Bolivia (May 2003)

This image from the LANDSAT 7 satellite (Enhanced Thematic Mapper instrument) shows the Santa Cruz region, Bolivia, on May 6, 2003.
Credit: NASA LANDSAT 7 ETM+


Satellite View of Santa Cruz, Bolivia (2000)

This image from the LANDSAT 7 satellite (Enhanced Thematic Mapper instrument) shows the Santa Cruz region, Bolivia, in 2000. The forested areas appear reddish-purple, and cleared areas are green and bright red. Credit: NASA LANDSAT 7 ETM+


While croplands may provide more food than forests, they don’t offer much relief from hot tropical climes, a new study finds.

A study of Santa Cruz, Bolivia, which used NASA satellites and computer models, reports that cutting down tropical forests and converting grasslands to crops may inadvertently warm those local areas. According to the research, forest canopies create wind turbulence that cools the air, and native grasslands are better adapted to the tropics than crops, in ways that also have a cooling effect.

Lahouari Bounoua, a researcher at the University of Maryland (UMD), College Park, Md., and NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md., used a computer model to show that temperatures in January may have warmed on average by about 1 degree Fahrenheit in the last 25 years, solely because native forests and grasslands in Santa Cruz were replaced with crops. Co-authors in this interdisciplinary study of land cover and climate changes included University of Maryland researcher, Ruth DeFries, NASA GSFC/UMD scientist Marc Imhoff and NASA GSFC researcher Marc Steininger.



"It’s important to understand the effects of changing land cover in the tropics, because unlike the past, future deforestation is likely to occur in tropical and sub-tropical regions," said Bounoua.

The Santa Cruz region has one of the highest rates of concentrated deforestation in the world over the last 20 years, a recent study by co-author Steininger found.

According to the computer model, in places where tropical forest species were replaced by crops, nighttime temperatures dropped slightly, while daytime local temperatures rose by 3.6 degrees Fahrenheit (F) or 2 degrees Celsius. Forests have high canopies with varied surfaces, and the movement of winds over these rough surfaces creates turbulence and cools the air. Low, even croplands on the other hand create less turbulence from winds and don’t cool the air as much, the researchers found.

When grasslands were replaced by crops in the model, warming occurred because crops were only about half as efficient with water as the drought-adapted local grasses and therefore transpired less. Transpiration is a daytime process where water evaporates from the leaves during photosynthesis and cools the air.

Bounoua’s simulated 1 degree (F) rise in average monthly temperature agreed with historical records acquired from a weather station in Santa Cruz over the same time period.

The paper, appearing in the current issue of the Journal of Meteorology and Atmospheric Physics, used NASA’s Landsat images acquired between 1975 and 1999 to provide data of the steady conversion of forest and grassland to cropland. Data from the Advanced Very High Resolution Radiometer aboard the Polar Orbiting Environmental Satellite were used to account for seasonal changes of the vegetation.

Between 1975 and 1999 the area of agricultural land over the study site expanded by about 8155 square kilometers (5067 sq. miles), or about 466 percent of its 1975 value. Results show that deforestation around Santa Cruz increased between 1975 and 1996, and then declined between 1996 and 1999.

The researchers entered these and other data of the tropical forest into the Simple Biosphere (SiB2) model, which was developed by NASA. Climate conditions of the Santa Cruz area were obtained from a separate model. This separate model was not influenced by temperature changes that occurred in the SiB2 simulations. Bounoua and colleagues then kept all the conditions the same but changed only the quantity and type of plants as they were converted to crops over time.


NASA’s mission is to understand and protect our home planet by studying the primary causes of climate variability, including what changes are occurring in global land cover and land use, and their causes and impacts. This research was funded by NASA.

Krishna Ramanujan | Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0715bolivia.html

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>