Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Textbook case of tectonic movement is wrong, says new study

21.08.2003


Results from an expedition to the sea floor near the Hawaiian Islands show evidence that the deep Earth is more unsettled than geologists have long believed. A new University of Rochester study suggests that the long chain of islands and seamounts, which is deemed a "textbook" example of tectonic plate motion, was formed in part by a moving plume of magma, upsetting the prevailing theory that plumes have been unmoving fixtures in Earth’s history. The research will be published in the August 22 issue of Science.



"Mobile magma plumes force us to reassess some of our most basic assumptions about the way the mantle operates," says John Tarduno, professor of earth and environmental sciences at the University. "We’ve relied on them for a long time as unwavering markers, but now we’ll have to redefine our understanding of global geography."

Traditionally, the islands were thought to have formed as the massive Pacific plate, the largest single section of Earth’s crust, moved sluggishly between the Americas and Asia. A plume, or "hot spot," brought super-heated magma from deep in the Earth to close to the crust, resulting in concentrated areas of volcanic activity. As the Pacific plate moved across this hot spot, the plume created a long series of islands and subsurface mountains. Though this chain of seamounts seemed like a perfect record of Pacific plate movement, a strange bend in the chain, dated at about 47 million years ago, troubled some geologists. To most, however, this bend was taken as the classic example of how plates can change their motion. In fact, a figure of the bend can be found in nearly all introductory text books on geology and geophysics.


Tarduno and an international team spent two months aboard the ocean drilling ship JOIDES Resolution, retrieving samples of rock from the Emperor-Hawaiian seamount chain miles beneath the sea’s surface. Rocks retrieved in 1980 and 1992 hinted that the seamounts were not conforming to expectations. The team started at the northern end of the chain, near Japan, braving cold, foggy days and dodging the occasional typhoon to pull up several long cores of rock as they worked their way south. Using a highly sensitive magnetic device called a SQUID (Superconducting Quantum Interference Device), Tarduno’s team discovered that the magnetism of the cores did not fit with conventional wisdom of fixed hotspots.

The magnetization of the lavas recovered from the northern end of the Emperor-Hawaiian chain suggested these rocks were formed much farther north than the current hotspot, which is forming Hawaii today. As magma forms, magnetite, a magnetically sensitive mineral, records the Earth’s magnetic field just like a compass. As the magma cools and becomes solid rock, the compass is locked in place. Measuring the angle that this magnetism records relative to the Earth’s surface allows geophysicists to determine the latitude at which magma solidified: Near the equator the angle is very small while nearer the poles, the angle is near vertical. If the Hawaiian hot spot had always been fixed at its current location of 19 degrees north, then all the rocks of the entire chain should have formed and cooled there, preserving the magnetic signature of 19 degrees even as the plate dragged the new stones north-westward. Tarduno’s team, however, found that the more northern their samples, the higher their latitude. The northern-most lavas they recovered were formed at over 30 degrees north about 80 million years ago, nearly a thousand miles from where the hot spot currently lies.

"The only way to account for these findings is if the Pacific plate was almost stationary for a time while the magma plume was moving south," says Rory Cottrell, research scientist and coauthor of the paper. "At some point about 45 million years ago, it seems that the plume stopped moving and the plate began."

At the mysterious bend in the chain the magnetite latitude readings level off to 19 degrees, suggesting that for some reason the magma plume stopped dead in its tracks.

"Why the hot spot stopped moving south, and whether this is related to the Pacific plate suddenly moving, is something we’d all like to discover," says Tarduno. "There’s been a quiet controversy about hot-spot motion for 30 years because some people thought the accepted theory wasn’t adding up. This study answers a lot of questions."

Aside from shedding light on tectonic motion, the findings will likely prove a boon for climatologists studying the ancient Earth. Climate changes are recorded in rocks such as those on the Pacific ocean floor, but in order to accurately judge ancient climate, the scientists must know at what latitude the rocks were at a given time in the past. Measuring against the bent Hawaiian-Emperor chain would yield results that would misplace those rocks and so throw off scientists’ picture of early Earth’s climate. The study also vindicates the work of some mantle modelers who have never had a problem with moving hot spots and who did not like the idea that a crustal plate as large as the Pacific could make a nearly right-angle bend in just a million years or so.

A meeting this month in Iceland, beneath which a hot spot is thought to currently reside, will focus heavily on the state of knowledge about plumes including the new idea that they are not stationary. As Tarduno says, "We’re all just swaying around in the mantle wind."

This research was funded by the National Science Foundation.

Jonathan Sherwood | University of Rochester
Further information:
http://www.rochester.edu/pr/News/NewsReleases/latest/Tarduno-HotSpot.html

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>