Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric science goes to ground: Researchers present new findings on the natural hydrogen cycle

21.08.2003


New evidence suggest earth’s soil may be as important as its atmosphere



New evidence is emerging on the probable effects of an anticipated reliance on hydrogen as a fuel: surprisingly, we may need to look down in the ground rather up in the air, for answers.

In the August 21 issue of the journal Nature, a group of researchers from the California Institute of Technology and other institutions reports results of a study of the atmospheric chemical reactions that produce and destroy hydrogen in the stratosphere. Funded in part by the National Science Foundation (NSF), the study concludes that most of the hydrogen eliminated from the atmosphere goes into the ground, and therefore that scientists will need to turn their focus toward developing an understanding of soil destruction of hydrogen to accurately predict whether hydrogen emissions will eventually accumulate in the air.


The researchers reached this conclusion after carefully measuring the abundance of a rare isotope of hydrogen known as deuterium. It has long been known that atmospheric hydrogen is rich in deuterium, but it was unclear why. The only reasonable explanation, scientists believed, is that atmospheric hydrogen is mostly destroyed by chemical reactions in the air, and that those reactions are relatively slow for deuterium-rich hydrogen, so it accumulates like salt in an evaporating pan of water.

If correct, this would mean that oxidizing atmospheric trace gases control the natural hydrogen cycle and that soils are relatively unimportant. But new research results suggest that one of the main natural sources of atmospheric hydrogen--the breakdown of methane--is actually responsible for the atmosphere’s enrichment in deuterium. This result implies that reactions with atmospheric oxidants may be less important to the hydrogen cycle, and that uptake by soils, where microbial processes involve methane, is the driving force.

Hydrogen is a highly reactive element, but answers to the questions of when and where it reacts, and under what circumstances, are difficult to unravel. These questions are simplified in the stratosphere, where it’s easier to single out and understand specific reactions. According to John Eiler, a geochemist at the California Institute of Technology and an author of the Nature paper, the new data were gathered from air samples taken from the stratosphere with one of the high-flying ER-2 planes operated by the NASA Dryden Flight Research Center in the Mojave Desert.

"We wanted to look at hydrogen in the stratosphere because it’s easy to study the production of hydrogen from methane separate from other influences," Eiler explains. "It may seem odd to go to the stratosphere to understand what’s happening in the ground, but this was the best way to get a global perspective on the importance of soils to the hydrogen cycle."

With precise information on the deuterium content of hydrogen formed from methane, the researchers were able to calculate that the soil uptake of hydrogen is as high as 80 percent. It is suspected that this hydrogen is used by soil-living microbes to carry on their biological functions, although the details of this process are poorly understood and have been the subject of only a few previous studies.

It seems likely, according to the scientists, that the hydrogen taken up by soils is relatively free of environmental consequences, but the question still remains of how much more hydrogen the soil can "consume." If future use of hydrogen in transportation results in a significant amount of leakage, then soil uptake must increase dramatically or it will be inadequate to cleanse the released hydrogen from the atmosphere, Eiler says.

"An analogy would be the discovery that trees and other plants get rid of some of the carbon dioxide that cars emit, but by no means all of it," he says. "So the question as we look toward a future hydrogen economy is whether [soil] microbes will be able to ’eat’ the hydrogen fast enough."

Bruce Doddridge, program director in NSF’s division of atmospheric sciences, which co-funded the research, said, "This carefully conducted research investigating the natural chemistry of sources and sinks affecting the abundance of hydrogen in the atmosphere results in the most accurate information to date, and appears to account for the atmospheric deuterium excess previously observed.

"A more accurate molecular hydrogen budget may have important implications as global fuel technology shifts its focus from fossil fuels to other sources," Doddridge added.

The lead author of the paper is Thom Rahn, a former post-doctoral fellow of Eiler’s who is now affiliated with Los Alamos National Laboratory. The other authors are Paul Wennberg, an atmospheric chemist at Caltech; Kristie A. Boering and Michael McCarthy, both of UC Berkeley; Stanley Tyler of UC Irvine; and Sue Schauffler of the National Center for Atmospheric Research in Boulder, Colorado.

In addition to NSF, an independent federal agency that supports fundamental research in science and engineering, other supporters of the research were the Davidow Fund and General Motors Corp., the David and Lucile Packard Foundation, the NASA Upper Atmosphere Research Program, and the National Center for Atmospheric Research.


###
NSF PR 03-87

NSF Program Contact: Bruce Doddridge, 703-292-8522, bdoddrid@nsf.gov
Caltech Media Contact: Robert Tindol, 626-395-3631, tindol@caltech.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. NSF funds research all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>