Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Nino’s surprising steady pacific rains can affect world weather

21.08.2003


EL NiñoS STEADY PACIFIC RAINS

These composite images show that the largest amounts (red) of stratiform rain, up to 60%, occur in the central Pacific during El Niño, such as occurred in the 1998 event. 1999 and 2000 were not El Niño years. CREDIT: University of Washington/NASA


GRAPHING EL Niño RAINS

These graphs were created from the TRMM satellite’s Precipitation Radar. The top graph shows that almost 60% of the rains that fell around 135 degrees latitude around the equator (central Pacific Ocean) were stratiform, so 40% were convective (thunderstorms). The bottom graph shows that almost 150 mm (5.9 inches) of rain fell in that area during an El Niño. CREDIT: UWA/NASA


Scientists using data from a NASA satellite have found another piece in the global climate puzzle created by El Niño. El Niño events produce more of a steady rain in the middle of the Pacific Ocean. This is important because whenever there is a change in the amount and duration of rainfall over an area, such as the central Pacific, it affects weather regionally and even worldwide.

The findings appeared in a paper authored by Courtney Schumacher and Robert Houze, atmospheric scientists at the University of Washington, Seattle, who used data from NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite to look at rainfall over the Pacific during the 1997-1998 El Niño. The study was published in a recent issue of the American Meteorological Society’s Journal of Climate.

El Niño occurs when warm water shifts from the western to the eastern Pacific Ocean and trade winds that usually blow from east to west across the equator diminish. As a result, rainfall patterns around the globe change during the life of these periodic climate events, and in some areas create floods or droughts. By identifying the changes in rainfall in one area of the globe, such as the central Pacific Ocean, scientists continue to piece together the El Niño puzzle that will help them improve rainfall forecasts around the world during the life of El Niño.



Schumacher and Houze noticed an unusually steady rainfall over the central Pacific, much like a gray day with light rain and drizzle. That is surprising over the central Pacific, an area normally known for thunderstorms that build up during the heat of the day from rapidly rising air or convection, and then rain themselves out within an hour.

"Instead, the rainfall we saw is called ’stratiform rain,’ which are weaker rains that cover larger areas," Schumacher said. It’s the type of rain that makes people want to stay inside all day.

Seeing the difference between the convective and stratiform rain is very important to climatologists. Rain type matters because when water condenses and raindrops form, heat is released. That heat is a main driver in the circulation or movement of the atmosphere. "Convective rain, like from thunderstorms, releases heat lower in the atmosphere, while the steady, light, stratiform rain releases heat higher in the atmosphere," Houze said.

Heat released at different levels of the atmosphere affects the vertical and horizontal movement of air. As a result, the heat from different types of rain can alter weather patterns, such as the familiar jet stream which impacts the United States. Weather prediction models benefit from better knowledge of the changing jet stream patterns, because storms like summer thunderstorms and winter snowstorms follow the path of the jet stream.

The researchers noted that because increased stratiform rains warm the upper levels of the atmosphere, that additional heat strengthens the way air moves higher up and over a larger area than thunderstorm-generated rainfall. The larger area of air affected can impact weather patterns around the world.

Although scientists are still uncertain why such large amounts of stratiform rain happen in the middle of the Pacific, especially during El Niño, observations from the TRMM satellite have allowed them to recognize this pattern. By identifying the type of rainfall, climatologists and meteorologists can make better rainfall forecasts in other areas of the world during the event.

"That’s the beauty of NASA’s TRMM satellite," said Jeff Halverson, TRMM outreach scientist from NASA’s Goddard Space Flight Center, Greenbelt, Md. "TRMM can see what’s happening in remote areas of the tropics that can have affects on the rest of the world."


TRMM is a joint NASA/Japanese Space Agency mission to study tropical rainfall and its implications for climate. Each day, the TRMM spacecraft observes the Earth’s equatorial and tropical regions.

This research was funded by NASA’s Earth Science Enterprise (ESE), the National Science Foundation and the National Oceanic and Atmospheric Administration. NASA’s ESE is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Rob Gutro | Goddard Space Flight Center
Further information:
http://www.trmm.gsfc.nasa.gov
http://www.gsfc.nasa.gov/topstory/2003/0818elNino.html
http://www.ametsoc.org/AMS/

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>