Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Nino’s surprising steady pacific rains can affect world weather

21.08.2003


EL NiñoS STEADY PACIFIC RAINS

These composite images show that the largest amounts (red) of stratiform rain, up to 60%, occur in the central Pacific during El Niño, such as occurred in the 1998 event. 1999 and 2000 were not El Niño years. CREDIT: University of Washington/NASA


GRAPHING EL Niño RAINS

These graphs were created from the TRMM satellite’s Precipitation Radar. The top graph shows that almost 60% of the rains that fell around 135 degrees latitude around the equator (central Pacific Ocean) were stratiform, so 40% were convective (thunderstorms). The bottom graph shows that almost 150 mm (5.9 inches) of rain fell in that area during an El Niño. CREDIT: UWA/NASA


Scientists using data from a NASA satellite have found another piece in the global climate puzzle created by El Niño. El Niño events produce more of a steady rain in the middle of the Pacific Ocean. This is important because whenever there is a change in the amount and duration of rainfall over an area, such as the central Pacific, it affects weather regionally and even worldwide.

The findings appeared in a paper authored by Courtney Schumacher and Robert Houze, atmospheric scientists at the University of Washington, Seattle, who used data from NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite to look at rainfall over the Pacific during the 1997-1998 El Niño. The study was published in a recent issue of the American Meteorological Society’s Journal of Climate.

El Niño occurs when warm water shifts from the western to the eastern Pacific Ocean and trade winds that usually blow from east to west across the equator diminish. As a result, rainfall patterns around the globe change during the life of these periodic climate events, and in some areas create floods or droughts. By identifying the changes in rainfall in one area of the globe, such as the central Pacific Ocean, scientists continue to piece together the El Niño puzzle that will help them improve rainfall forecasts around the world during the life of El Niño.



Schumacher and Houze noticed an unusually steady rainfall over the central Pacific, much like a gray day with light rain and drizzle. That is surprising over the central Pacific, an area normally known for thunderstorms that build up during the heat of the day from rapidly rising air or convection, and then rain themselves out within an hour.

"Instead, the rainfall we saw is called ’stratiform rain,’ which are weaker rains that cover larger areas," Schumacher said. It’s the type of rain that makes people want to stay inside all day.

Seeing the difference between the convective and stratiform rain is very important to climatologists. Rain type matters because when water condenses and raindrops form, heat is released. That heat is a main driver in the circulation or movement of the atmosphere. "Convective rain, like from thunderstorms, releases heat lower in the atmosphere, while the steady, light, stratiform rain releases heat higher in the atmosphere," Houze said.

Heat released at different levels of the atmosphere affects the vertical and horizontal movement of air. As a result, the heat from different types of rain can alter weather patterns, such as the familiar jet stream which impacts the United States. Weather prediction models benefit from better knowledge of the changing jet stream patterns, because storms like summer thunderstorms and winter snowstorms follow the path of the jet stream.

The researchers noted that because increased stratiform rains warm the upper levels of the atmosphere, that additional heat strengthens the way air moves higher up and over a larger area than thunderstorm-generated rainfall. The larger area of air affected can impact weather patterns around the world.

Although scientists are still uncertain why such large amounts of stratiform rain happen in the middle of the Pacific, especially during El Niño, observations from the TRMM satellite have allowed them to recognize this pattern. By identifying the type of rainfall, climatologists and meteorologists can make better rainfall forecasts in other areas of the world during the event.

"That’s the beauty of NASA’s TRMM satellite," said Jeff Halverson, TRMM outreach scientist from NASA’s Goddard Space Flight Center, Greenbelt, Md. "TRMM can see what’s happening in remote areas of the tropics that can have affects on the rest of the world."


TRMM is a joint NASA/Japanese Space Agency mission to study tropical rainfall and its implications for climate. Each day, the TRMM spacecraft observes the Earth’s equatorial and tropical regions.

This research was funded by NASA’s Earth Science Enterprise (ESE), the National Science Foundation and the National Oceanic and Atmospheric Administration. NASA’s ESE is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Rob Gutro | Goddard Space Flight Center
Further information:
http://www.trmm.gsfc.nasa.gov
http://www.gsfc.nasa.gov/topstory/2003/0818elNino.html
http://www.ametsoc.org/AMS/

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>