Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Nino’s surprising steady pacific rains can affect world weather

21.08.2003


EL NiñoS STEADY PACIFIC RAINS

These composite images show that the largest amounts (red) of stratiform rain, up to 60%, occur in the central Pacific during El Niño, such as occurred in the 1998 event. 1999 and 2000 were not El Niño years. CREDIT: University of Washington/NASA


GRAPHING EL Niño RAINS

These graphs were created from the TRMM satellite’s Precipitation Radar. The top graph shows that almost 60% of the rains that fell around 135 degrees latitude around the equator (central Pacific Ocean) were stratiform, so 40% were convective (thunderstorms). The bottom graph shows that almost 150 mm (5.9 inches) of rain fell in that area during an El Niño. CREDIT: UWA/NASA


Scientists using data from a NASA satellite have found another piece in the global climate puzzle created by El Niño. El Niño events produce more of a steady rain in the middle of the Pacific Ocean. This is important because whenever there is a change in the amount and duration of rainfall over an area, such as the central Pacific, it affects weather regionally and even worldwide.

The findings appeared in a paper authored by Courtney Schumacher and Robert Houze, atmospheric scientists at the University of Washington, Seattle, who used data from NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite to look at rainfall over the Pacific during the 1997-1998 El Niño. The study was published in a recent issue of the American Meteorological Society’s Journal of Climate.

El Niño occurs when warm water shifts from the western to the eastern Pacific Ocean and trade winds that usually blow from east to west across the equator diminish. As a result, rainfall patterns around the globe change during the life of these periodic climate events, and in some areas create floods or droughts. By identifying the changes in rainfall in one area of the globe, such as the central Pacific Ocean, scientists continue to piece together the El Niño puzzle that will help them improve rainfall forecasts around the world during the life of El Niño.



Schumacher and Houze noticed an unusually steady rainfall over the central Pacific, much like a gray day with light rain and drizzle. That is surprising over the central Pacific, an area normally known for thunderstorms that build up during the heat of the day from rapidly rising air or convection, and then rain themselves out within an hour.

"Instead, the rainfall we saw is called ’stratiform rain,’ which are weaker rains that cover larger areas," Schumacher said. It’s the type of rain that makes people want to stay inside all day.

Seeing the difference between the convective and stratiform rain is very important to climatologists. Rain type matters because when water condenses and raindrops form, heat is released. That heat is a main driver in the circulation or movement of the atmosphere. "Convective rain, like from thunderstorms, releases heat lower in the atmosphere, while the steady, light, stratiform rain releases heat higher in the atmosphere," Houze said.

Heat released at different levels of the atmosphere affects the vertical and horizontal movement of air. As a result, the heat from different types of rain can alter weather patterns, such as the familiar jet stream which impacts the United States. Weather prediction models benefit from better knowledge of the changing jet stream patterns, because storms like summer thunderstorms and winter snowstorms follow the path of the jet stream.

The researchers noted that because increased stratiform rains warm the upper levels of the atmosphere, that additional heat strengthens the way air moves higher up and over a larger area than thunderstorm-generated rainfall. The larger area of air affected can impact weather patterns around the world.

Although scientists are still uncertain why such large amounts of stratiform rain happen in the middle of the Pacific, especially during El Niño, observations from the TRMM satellite have allowed them to recognize this pattern. By identifying the type of rainfall, climatologists and meteorologists can make better rainfall forecasts in other areas of the world during the event.

"That’s the beauty of NASA’s TRMM satellite," said Jeff Halverson, TRMM outreach scientist from NASA’s Goddard Space Flight Center, Greenbelt, Md. "TRMM can see what’s happening in remote areas of the tropics that can have affects on the rest of the world."


TRMM is a joint NASA/Japanese Space Agency mission to study tropical rainfall and its implications for climate. Each day, the TRMM spacecraft observes the Earth’s equatorial and tropical regions.

This research was funded by NASA’s Earth Science Enterprise (ESE), the National Science Foundation and the National Oceanic and Atmospheric Administration. NASA’s ESE is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Rob Gutro | Goddard Space Flight Center
Further information:
http://www.trmm.gsfc.nasa.gov
http://www.gsfc.nasa.gov/topstory/2003/0818elNino.html
http://www.ametsoc.org/AMS/

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>