Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather extremes shed light on prairie’s past and environment’s future

18.08.2003


Highway travelers view much of the Midwest as little more than barren flatlands. The formation of the region and its rich soils, especially tall grass areas that seemingly should support diverse forests, however, have long fascinated scientists. Newly available, long-term climate data now say the area is the product of weather extremes.



Compared with adjacent regions, the tall-grass area of the plains endures more frequent periods of severe drought, more lightning strikes and subsequent fires from frequent winter thunderstorms, dryer cold weather and more rapid plant and soil moisture evaporation, a team of researchers from the Illinois State Water Survey and University of Illinois at Urbana-Champaign says in the current issue of the journal Physical Geography.

"Beyond the 100 years of scientific curiosity is that these extremes of weather and their frequency or their non-frequency that we have found to be critical factors for the plains are actually very important issues as we face global climate change," said Stanley A. Changnon, a water survey scientist and professor of geography. "The long-term data we’ve gathered and are analyzing can provide us with very useful guidance as we talk about potential changes to our agricultural systems and to the way we as people live in general."


Changnon and his State Water Survey colleagues have digitized national climate data going back to 1890. Information from before 1948, when the federal government began a formal record-keeping procedure on computer punch cards, was taken from records left by volunteer weather observers. Once they interpreted and entered the information into digital records, the researchers began analyzing individual weather factors and running comparisons.

The triangular-shaped tall grass area scrutinized in the study stretches from Tulsa, Okla., to Fargo, N.D., to Indianapolis. European explorers entering what they called "an inland sea" found a humid area with grasses up to 6 feet tall.

Long before, the plains were bulldozed flat during four major glacial advances and retreats that left behind sands, nutrient-rich soils and rocks. Wide flat rivers drained the melting ice finally about 11,500 years ago, at which time the tall grasses arose. Shorter domesticated grasses and farmers’ fields of corn, wheat and soybeans have since replaced the tall grasses.

To the north and south of the tall-grass region, there emerged extensive forests. A long-debated scientific question, the researchers noted, is why the tall-grass prairie only supported grass when the soil easily could have sprouted diverse forests. Numerous ecological and climate-related theories have been raised, disputed and discarded.

The newly acquired data -- housed at the Midwestern Regional Climate Center at the State Water Survey -- are providing scientifically strong details, Changnon said.

One of the factors that emerged in the study was not new. The role of fire in sustaining the prairie and preventing the growth of trees was first established in the early 1950s, based on pioneer descriptions of deliberate actions taken by Indians in pursuit of buffalo. The impact and frequency of fire, however, are now strengthened by the new data on thunderstorms. The plains average 60 to 80 storms and more than 10,000 minutes of storm activity each year. Only Florida and the Gulf Coast experience more. The tall grass region also faces a three-to-five-times greater risk of fire from lightning.

In addition to the heat and searing of fires, severe droughts struck the region in 15 percent of the almost 105 years covered by the study; adjacent forested regions to the east and west had droughts in less than 10 percent of the years, and areas to the north and south were struck by drought even less frequently.

While rainfall was of similar frequency during summers, cold-weather precipitation in the tall-grass plains has been dramatically less. In 71 of the years covered, the tall-grass prairie region received less than 15 inches of precipitation during the winters; adjacent forested lands to the south had only eight dry seasons.

The periods of dry winters also contributed to dry vegetation, making the grasses more susceptible to fires set by Indians or caused by lightning.

Another contributing factor to sustaining the grassland was the frequency and amount of warm-season evapotranspiration -- a process in which moisture evaporates from the soil and transpires from plants.

Most of the tall-grass triangle had precipitation/evaporation ratios of .75 or higher, a number that suggests unusually wet warm-season conditions, in 70 percent of the years studied; adjacent regions in the high plains had much lower ratios. The researchers theorize that evapotranspiration rates played a major role in the formation and maintenance of the western boundary (Tulsa to Fargo) separating the short grasses of the plains and the tall grass triangle. The tall grasses needed enough warm-weather precipitation to produce the higher evapotranspiration rate, the researchers found.

The experience of the Midwest’s prairie is one of extremes, including some of the very factors that could be more widespread as a result of global warming, said Changnon, chief emeritus of the State Water Survey.

"What this shows is that the whole environment of the Midwest has been very sensitive to certain extreme weather events," he said. "Having long-term data lets us talk more intelligently about potential changes in global climate. Most climate modeling generates average changes, not the frequency of extreme events. Talk of the occurrence of a 100-year flood really hasn’t been based on 100 years of data; it may be extrapolated from just 40 years of records, so scientists must say that a 100-year flood will happen at least once, not necessarily only once, in 100 years."


Co-authors of the study, funded by the National Oceanic and Atmospheric Administration, were Changnon, Kenneth E. Kunkel, head of the atmospheric environment section of the State Water Survey and professor of atmospheric sciences at Illinois, and Derek Winstanley, chief of the State Water Survey and professor of geography at Illinois.

Jim Barlow | UIUC
Further information:
http://www.uiuc.edu/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>