Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With supercooling and the right geometry, ’warm’ glaciers can trap and transport silt

15.08.2003


It may take them a century to advance a few meters, but the bottoms of some glaciers churn with supercooled activity, according to an article by a Lehigh University geologist in the Aug. 14 issue of Nature magazine.



Edward B. Evenson, professor of earth and environmental sciences, says his team’s 12-year study of the Matanuska Glacier in south-central Alaska sheds light on a riddle that has long baffled geologists - how glaciers are able to pick up and transport silt.

The findings of Evenson and his colleagues may also help geologists better understand the Laurentide Ice Sheet glaciers that covered Canada and much of the northern United States during the most recent Ice Age.


The Nature article, titled "Stabilizing feedbacks in glacier-bed erosion," explains how glaciers "often erode, transport and deposit sediment much more rapidly than nonglacial environments." Evenson and his students and colleagues have published 20 articles related to that topic since 1996.

When air temperatures rise and cause the ice on a glacier’s surface to melt, Evenson and his group found, water penetrates through the glacier until it reaches the bottom. There, under massive pressure from the weight of the glacier above, the water becomes supercooled and its freezing point drops by a fraction of a degree, As the water flows up and out from under the glacier however, the pressure is reduced and some of the supercooled water re-freezes to form what geologists call "frazil ice" - minute crystals of ice that float atop the remaining water.

As the pressure from above continues to lessen, the frazil ice becomes larger and begins to attach to the bottom of the glacier. There, it picks up particles of silt from the dirty, silt-laden water flowing beneath the glacier, much the same as an air filter in a car removes dust and dirt from the air. As the glacier flows, grains of silt are trapped in the interstitial spaces of the ice crystals. The sediment and ice eventually separate from each other, producing layers of clean and dirty ice. This process goes on all summer as melting water penetrates down to the glacier bed.

Evenson’s analysis of the "basal-stratified ice" beneath the Matanuska Glacier also found traces of tritium, an isotope of hydrogen that has been released into the atmosphere during the past 50 years by nuclear weapons testing.

"The tritium tells us that this basal-stratified ice is young," says Evenson. By contrast, he says, the ice on top of the glacier, which is not nearly so dynamic, is estimated to be several hundred years old.

The supercooling process does not occur in the "cold" glaciers of Antarctica and Greenland, where mean annual temperatures remain below freezing and prevent melting water from penetrating to the bottom of the ice sheet, says Evenson.

Among the world’s "warm" glaciers, which are found in Canada, Alaska, Iceland and many mountain ranges, the supercooling process is likely to occur only in those glaciers with what Evenson calls a favorable geometry.

Glaciers located in flat areas, like the Matanuska, says Evenson, are more likely than most mountain glaciers, including those in the Alps or the Cascades, to permit the supercooling necessary for basal-stratified ice to form. As a flatland glacier advances into a basin, the glacier’s shape changes, imposing the necessary pressure on the water that has penetrated to the glacier bottom.

"Because most mountain glaciers are moving downhill, the angle between the slope of the glacier’s surface and the slope of its base is not right. You need a relatively flat glacier and a subglacial basin, or ’overdeepening,’ and then supercooling occurs," Evenson says.

Evenson worked with researchers from the University of Buffalo, Pennsylvania State University, Michigan State University and the Cold Regions Research and Engineering Laboratory (CRREL) of Hanover, N.H., which helped fund the study. The researchers also received support from the National Science Foundation.

After studying the Matanuska Glacier, Evenson and his colleagues tried to determine if basal-stratified ice was forming in a similar manner at other warm glaciers. At the Malaspina Glacier in Alaska, they found vents full of frazil ice, indicating that the same process was occurring. In the glaciers of Iceland, they found supercooled water in over-deepened glaciers. They have concluded that this supercooling process occurs on all warm glaciers where the geometry is right, and that this same process most likely governed Ice Age glaciers. The Laurentide Ice Sheet, says Evenson, was warm along its margins and cold in its interior. As it retreated north between 18,000 and 10,000 years ago, the glacier left behind deposits of thick till, drumlins and eskers - demonstrating that it was warm at its margin.

Evenson and his students drilled hundreds of holes in glaciers, using a hose that sends boiling water through a glacier at a rate of about 1 meter per minute. By injecting a fluorescent dye and monitoring the vents through which the water comes out, the researchers were able to determine the shape and routing of the subglacial plumbing system.

Gregory Baker, a Lehigh-trained geophysicist now with the University of Buffalo, used a ground-penetrating laser to look through the glacier and measure its thickness and the amount of debris underneath it.


###
Besides Evenson and Baker, the Nature paper was co-authored by Richard B. Alley (Penn State), Daniel E. Lawson (CRREL), and Grahame Larson (Michigan State).

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>