Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With supercooling and the right geometry, ’warm’ glaciers can trap and transport silt


It may take them a century to advance a few meters, but the bottoms of some glaciers churn with supercooled activity, according to an article by a Lehigh University geologist in the Aug. 14 issue of Nature magazine.

Edward B. Evenson, professor of earth and environmental sciences, says his team’s 12-year study of the Matanuska Glacier in south-central Alaska sheds light on a riddle that has long baffled geologists - how glaciers are able to pick up and transport silt.

The findings of Evenson and his colleagues may also help geologists better understand the Laurentide Ice Sheet glaciers that covered Canada and much of the northern United States during the most recent Ice Age.

The Nature article, titled "Stabilizing feedbacks in glacier-bed erosion," explains how glaciers "often erode, transport and deposit sediment much more rapidly than nonglacial environments." Evenson and his students and colleagues have published 20 articles related to that topic since 1996.

When air temperatures rise and cause the ice on a glacier’s surface to melt, Evenson and his group found, water penetrates through the glacier until it reaches the bottom. There, under massive pressure from the weight of the glacier above, the water becomes supercooled and its freezing point drops by a fraction of a degree, As the water flows up and out from under the glacier however, the pressure is reduced and some of the supercooled water re-freezes to form what geologists call "frazil ice" - minute crystals of ice that float atop the remaining water.

As the pressure from above continues to lessen, the frazil ice becomes larger and begins to attach to the bottom of the glacier. There, it picks up particles of silt from the dirty, silt-laden water flowing beneath the glacier, much the same as an air filter in a car removes dust and dirt from the air. As the glacier flows, grains of silt are trapped in the interstitial spaces of the ice crystals. The sediment and ice eventually separate from each other, producing layers of clean and dirty ice. This process goes on all summer as melting water penetrates down to the glacier bed.

Evenson’s analysis of the "basal-stratified ice" beneath the Matanuska Glacier also found traces of tritium, an isotope of hydrogen that has been released into the atmosphere during the past 50 years by nuclear weapons testing.

"The tritium tells us that this basal-stratified ice is young," says Evenson. By contrast, he says, the ice on top of the glacier, which is not nearly so dynamic, is estimated to be several hundred years old.

The supercooling process does not occur in the "cold" glaciers of Antarctica and Greenland, where mean annual temperatures remain below freezing and prevent melting water from penetrating to the bottom of the ice sheet, says Evenson.

Among the world’s "warm" glaciers, which are found in Canada, Alaska, Iceland and many mountain ranges, the supercooling process is likely to occur only in those glaciers with what Evenson calls a favorable geometry.

Glaciers located in flat areas, like the Matanuska, says Evenson, are more likely than most mountain glaciers, including those in the Alps or the Cascades, to permit the supercooling necessary for basal-stratified ice to form. As a flatland glacier advances into a basin, the glacier’s shape changes, imposing the necessary pressure on the water that has penetrated to the glacier bottom.

"Because most mountain glaciers are moving downhill, the angle between the slope of the glacier’s surface and the slope of its base is not right. You need a relatively flat glacier and a subglacial basin, or ’overdeepening,’ and then supercooling occurs," Evenson says.

Evenson worked with researchers from the University of Buffalo, Pennsylvania State University, Michigan State University and the Cold Regions Research and Engineering Laboratory (CRREL) of Hanover, N.H., which helped fund the study. The researchers also received support from the National Science Foundation.

After studying the Matanuska Glacier, Evenson and his colleagues tried to determine if basal-stratified ice was forming in a similar manner at other warm glaciers. At the Malaspina Glacier in Alaska, they found vents full of frazil ice, indicating that the same process was occurring. In the glaciers of Iceland, they found supercooled water in over-deepened glaciers. They have concluded that this supercooling process occurs on all warm glaciers where the geometry is right, and that this same process most likely governed Ice Age glaciers. The Laurentide Ice Sheet, says Evenson, was warm along its margins and cold in its interior. As it retreated north between 18,000 and 10,000 years ago, the glacier left behind deposits of thick till, drumlins and eskers - demonstrating that it was warm at its margin.

Evenson and his students drilled hundreds of holes in glaciers, using a hose that sends boiling water through a glacier at a rate of about 1 meter per minute. By injecting a fluorescent dye and monitoring the vents through which the water comes out, the researchers were able to determine the shape and routing of the subglacial plumbing system.

Gregory Baker, a Lehigh-trained geophysicist now with the University of Buffalo, used a ground-penetrating laser to look through the glacier and measure its thickness and the amount of debris underneath it.

Besides Evenson and Baker, the Nature paper was co-authored by Richard B. Alley (Penn State), Daniel E. Lawson (CRREL), and Grahame Larson (Michigan State).

Kurt Pfitzer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>