Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean Carbon Cycle Affected by Drought


Recent drought conditions in the North Pacific Ocean near Hawaii have caused a decrease in the strength of the carbon dioxide sink, according to a study published this week in the journal Nature. A team funded by the National Science Foundation (NSF) and led by scientists Dave Karl and Roger Lukas of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii used 15 years of time-series measurements to compare the precipitation, salinity and carbon dioxide (CO2) concentrations at Station ALOHA, located in the Pacific Ocean approximately 100 kilometers north of Oahu.

The study shows that a decrease in the tendency of the ocean to take up CO2 is due to an increase in the water’s salinity, which is a direct result of the drought seen in much of the North Pacific Ocean over the past five years.

"Our study can be considered an oceanic analogue of the long standing atmospheric measurement program at the Mauna Loa Observatory," says Karl. "The results from this study were unexpected; we didn’t realize how much difference salinity can make when modeling the carbon cycle."

According to John Dore, a SOEST researcher and lead author of the study, rainfall patterns and ocean CO2 are inexorably linked. "We all recognize the impacts of drought on land, but its effects on the biogeochemistry of the ocean have tended to go unnoticed," says Dore.

The Hawaii Ocean Time-series (HOT) program is an ongoing field study designed to determine temporal variability in physical, chemical and biological processes in the North Pacific Subtropical Gyre (NPSG), one of Earth’s largest habitats. The program began in October 1988 with the establishment of the benchmark sampling site, Station ALOHA, at 22o45’N, 158oW. Nearly every month for the past 15 years, a team of interdisciplinary scientists with common research objectives have been making shipboard measurements, conducting experiments and testing a broad range of ecological hypotheses.

"This extended period of time-series measurements is very rare," says Lukas. "Along with a sister station in Bermuda, Station ALOHA has the longest records of comprehensive biogeochemical and physical measurements anywhere in the world."

The data have already revealed unexpected variability in habitat changes and in the response of the organisms living there. The present study is but one important example. "These interesting results are another example that shows the importance of longterm observations to ocean research," says James Yoder, director of NSF’s division of ocean sciences, which funded the research. "Ocean observatories of the future will provide the capability to tease out important signals that are missed during the comparatively short duration of oceanographic expeditions."

Scientists involved in the HOT project have recently received new funding (with other colleagues) from NSF to establish an autonomous ocean observatory at Station ALOHA, reusing an abandoned fiber optic telephone cable to extend the Internet from their offices to the seafloor three miles below the ocean surface. From there, the cable travels upward into the surface layer, providing the capability for real-time observations of ocean processes. "With this observatory we will move much of the sampling from the ship to our desktops," says Lukas. "But, there will always be a need for us to go to sea, both to maintain the observatory, and to make measurements that require water sampling."

During this next five-year observation period, the measurement program will move toward more autonomous detection of ocean characteristics by connecting instrumented moorings to the ALOHA observatory and using autonomous underwater vehicles and gliders to provide spatial context around the site.

The research was also funded by the State of Hawaii.

Cheryl Dybas | NSF
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>