Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geological Tool Helps Scientists Map the Interior of the Ocean


A seismic reflection profiling section with focus on the water column

Raymond Schmitt of Woods Hole Oceanographic Institution (right) and Steven Holbrook of the University of Wyoming discuss seismic profiling. Photo by Tom Kleindinst, WHOI

A new application of a decades-old technique to study Earth´s interior is allowing scientists "see" the layers in the ocean, providing new insight on the structure of ocean currents, eddies and mixing processes. The findings, reported in this week´s Science by a team from the University of Wyoming and Woods Hole Oceanographic Institution (WHOI), could be a major step forward in the ability to remotely survey the interior of the ocean.

The study reports on a new adaptation of seismic reflection profiling - sending sound unto the water and analyzing the return echoes - to create detailed pictures of eddies, internal waves, and other oceanic features that affect climate, fisheries and the spread of pollution.

Seismic profiling has been used for more than 50 years to map Earth´s interior and to explore for oil and gas deposits. This is the first application that may help scientists locate yet-undiscovered mixing sites that may improve understanding of how the ocean absorbs heat and moves it from the equator to the poles. Better understanding of ocean mixing will play a role in improving climate models, said coauthor Raymond Schmitt of the Woods Hole Oceanographic Institution.

Lead author Steven Holbrook of the University of Wyoming, who was a scientist at WHOI from 1988 to 1997, said this new use of an old technique could be a major step forward in studying the ocean. For the first time, scientists are able to image the shapes of water layers with contrasting temperature and salinity and see detailed structures inside the ocean. Seismic reflection profiling, Holbrook said, could prove to be "a revolutionary way of looking at the ocean" and may pave the way for remotely sensing temperature variations inside the ocean and for mapping the boundaries between deep-water and abyssal currents.

The idea for the new application of an established technique developed when Holbrook and colleagues noticed unusual echoes coming from within the ocean while studying the structure of the continent’s edge near the Grand Banks off Newfoundland. He visited WHOI and sought advice from oceanographers on how to interpret the surprisingly strong water column reflections.

Physical oceanographer Ray Schmitt noticed that the size and pattern of Holbrook’s acoustic reflections agreed well with typical characteristics of intrusions — masses of water of similar density but of contrasting temperature and salinity — noted in the same location more than twenty years ago.

However, Schmitt needed physical data on conditions at the time of the seismic surveys to verify his interpretation. Holbrook supplied a temperature profile that confirmed the presence of strong intrusions, and Schmitt was able to infer the salinity, density and sound speed structure from the temperature data. A match was found with the acoustic reflections at that site, confirming that the low-frequency sound energy was reflecting off the gradients in physical properties in the water column. The researchers then used the echoes to create images of the oceanic front between the Labrador Current and the North Atlantic Current.

Their data show structures that are suggestive of intrusions, internal waves, large scale eddies and possibly boundaries of deep water masses. However, aside from the intrusions, there is no confirming physical data to reinforce these other interpretations. Schmitt and Holbrook are now discussing how to perform a combined physical and seismic expedition, possibly with two ships, to confirm their interpretations.

Schmitt said two aspects of seismic reflection profiling make it attractive as a survey tool for oceanic water column structure: the acoustic echoes are obtained throughout the whole water column, and the lateral spacing of the returns is only about 6 meters (about 20 feet), making it easy to track the horizontal extent of reflecting features. Most traditional water column data are collected by repeated lowerings of towed instrument packages, which limits the depth range to a few hundred meters with 500-1000 meter (about 1500 to 3300 feet) spacing between profiles. The new technique allows rapid surveys of ocean structures that change more quickly than traditional methods can observe.

Scientists studying the earth’s interior have been collecting reflections coming from within the ocean for decades but have not paid attention to other uses of the data until now. Holbrook and Schmitt said the water column echoes, although weak, are probably common in seismic reflection profiling data sets that exist all over the world and could be a huge, untapped resource for exploring ocean structure and dynamics.

Until now, the water column signal has been regarded as just noise to the seismologists," Schmitt said. "New insights into ocean mixing processes open up to us if we think about that ’noise’ as indeed containing useful signals."

Contact: Shelley Dawicki,

Shelley Dawicki | WHOI News Release
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>