Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geological Tool Helps Scientists Map the Interior of the Ocean

08.08.2003


A seismic reflection profiling section with focus on the water column


Raymond Schmitt of Woods Hole Oceanographic Institution (right) and Steven Holbrook of the University of Wyoming discuss seismic profiling. Photo by Tom Kleindinst, WHOI


A new application of a decades-old technique to study Earth´s interior is allowing scientists "see" the layers in the ocean, providing new insight on the structure of ocean currents, eddies and mixing processes. The findings, reported in this week´s Science by a team from the University of Wyoming and Woods Hole Oceanographic Institution (WHOI), could be a major step forward in the ability to remotely survey the interior of the ocean.

The study reports on a new adaptation of seismic reflection profiling - sending sound unto the water and analyzing the return echoes - to create detailed pictures of eddies, internal waves, and other oceanic features that affect climate, fisheries and the spread of pollution.

Seismic profiling has been used for more than 50 years to map Earth´s interior and to explore for oil and gas deposits. This is the first application that may help scientists locate yet-undiscovered mixing sites that may improve understanding of how the ocean absorbs heat and moves it from the equator to the poles. Better understanding of ocean mixing will play a role in improving climate models, said coauthor Raymond Schmitt of the Woods Hole Oceanographic Institution.



Lead author Steven Holbrook of the University of Wyoming, who was a scientist at WHOI from 1988 to 1997, said this new use of an old technique could be a major step forward in studying the ocean. For the first time, scientists are able to image the shapes of water layers with contrasting temperature and salinity and see detailed structures inside the ocean. Seismic reflection profiling, Holbrook said, could prove to be "a revolutionary way of looking at the ocean" and may pave the way for remotely sensing temperature variations inside the ocean and for mapping the boundaries between deep-water and abyssal currents.

The idea for the new application of an established technique developed when Holbrook and colleagues noticed unusual echoes coming from within the ocean while studying the structure of the continent’s edge near the Grand Banks off Newfoundland. He visited WHOI and sought advice from oceanographers on how to interpret the surprisingly strong water column reflections.

Physical oceanographer Ray Schmitt noticed that the size and pattern of Holbrook’s acoustic reflections agreed well with typical characteristics of intrusions — masses of water of similar density but of contrasting temperature and salinity — noted in the same location more than twenty years ago.

However, Schmitt needed physical data on conditions at the time of the seismic surveys to verify his interpretation. Holbrook supplied a temperature profile that confirmed the presence of strong intrusions, and Schmitt was able to infer the salinity, density and sound speed structure from the temperature data. A match was found with the acoustic reflections at that site, confirming that the low-frequency sound energy was reflecting off the gradients in physical properties in the water column. The researchers then used the echoes to create images of the oceanic front between the Labrador Current and the North Atlantic Current.

Their data show structures that are suggestive of intrusions, internal waves, large scale eddies and possibly boundaries of deep water masses. However, aside from the intrusions, there is no confirming physical data to reinforce these other interpretations. Schmitt and Holbrook are now discussing how to perform a combined physical and seismic expedition, possibly with two ships, to confirm their interpretations.

Schmitt said two aspects of seismic reflection profiling make it attractive as a survey tool for oceanic water column structure: the acoustic echoes are obtained throughout the whole water column, and the lateral spacing of the returns is only about 6 meters (about 20 feet), making it easy to track the horizontal extent of reflecting features. Most traditional water column data are collected by repeated lowerings of towed instrument packages, which limits the depth range to a few hundred meters with 500-1000 meter (about 1500 to 3300 feet) spacing between profiles. The new technique allows rapid surveys of ocean structures that change more quickly than traditional methods can observe.

Scientists studying the earth’s interior have been collecting reflections coming from within the ocean for decades but have not paid attention to other uses of the data until now. Holbrook and Schmitt said the water column echoes, although weak, are probably common in seismic reflection profiling data sets that exist all over the world and could be a huge, untapped resource for exploring ocean structure and dynamics.

Until now, the water column signal has been regarded as just noise to the seismologists," Schmitt said. "New insights into ocean mixing processes open up to us if we think about that ’noise’ as indeed containing useful signals."

Contact: Shelley Dawicki, media@whoi.edu

Shelley Dawicki | WHOI News Release
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht International team reports ocean acidification spreading rapidly in Arctic Ocean
28.02.2017 | University of Delaware

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>