Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geological Tool Helps Scientists Map the Interior of the Ocean

08.08.2003


A seismic reflection profiling section with focus on the water column


Raymond Schmitt of Woods Hole Oceanographic Institution (right) and Steven Holbrook of the University of Wyoming discuss seismic profiling. Photo by Tom Kleindinst, WHOI


A new application of a decades-old technique to study Earth´s interior is allowing scientists "see" the layers in the ocean, providing new insight on the structure of ocean currents, eddies and mixing processes. The findings, reported in this week´s Science by a team from the University of Wyoming and Woods Hole Oceanographic Institution (WHOI), could be a major step forward in the ability to remotely survey the interior of the ocean.

The study reports on a new adaptation of seismic reflection profiling - sending sound unto the water and analyzing the return echoes - to create detailed pictures of eddies, internal waves, and other oceanic features that affect climate, fisheries and the spread of pollution.

Seismic profiling has been used for more than 50 years to map Earth´s interior and to explore for oil and gas deposits. This is the first application that may help scientists locate yet-undiscovered mixing sites that may improve understanding of how the ocean absorbs heat and moves it from the equator to the poles. Better understanding of ocean mixing will play a role in improving climate models, said coauthor Raymond Schmitt of the Woods Hole Oceanographic Institution.



Lead author Steven Holbrook of the University of Wyoming, who was a scientist at WHOI from 1988 to 1997, said this new use of an old technique could be a major step forward in studying the ocean. For the first time, scientists are able to image the shapes of water layers with contrasting temperature and salinity and see detailed structures inside the ocean. Seismic reflection profiling, Holbrook said, could prove to be "a revolutionary way of looking at the ocean" and may pave the way for remotely sensing temperature variations inside the ocean and for mapping the boundaries between deep-water and abyssal currents.

The idea for the new application of an established technique developed when Holbrook and colleagues noticed unusual echoes coming from within the ocean while studying the structure of the continent’s edge near the Grand Banks off Newfoundland. He visited WHOI and sought advice from oceanographers on how to interpret the surprisingly strong water column reflections.

Physical oceanographer Ray Schmitt noticed that the size and pattern of Holbrook’s acoustic reflections agreed well with typical characteristics of intrusions — masses of water of similar density but of contrasting temperature and salinity — noted in the same location more than twenty years ago.

However, Schmitt needed physical data on conditions at the time of the seismic surveys to verify his interpretation. Holbrook supplied a temperature profile that confirmed the presence of strong intrusions, and Schmitt was able to infer the salinity, density and sound speed structure from the temperature data. A match was found with the acoustic reflections at that site, confirming that the low-frequency sound energy was reflecting off the gradients in physical properties in the water column. The researchers then used the echoes to create images of the oceanic front between the Labrador Current and the North Atlantic Current.

Their data show structures that are suggestive of intrusions, internal waves, large scale eddies and possibly boundaries of deep water masses. However, aside from the intrusions, there is no confirming physical data to reinforce these other interpretations. Schmitt and Holbrook are now discussing how to perform a combined physical and seismic expedition, possibly with two ships, to confirm their interpretations.

Schmitt said two aspects of seismic reflection profiling make it attractive as a survey tool for oceanic water column structure: the acoustic echoes are obtained throughout the whole water column, and the lateral spacing of the returns is only about 6 meters (about 20 feet), making it easy to track the horizontal extent of reflecting features. Most traditional water column data are collected by repeated lowerings of towed instrument packages, which limits the depth range to a few hundred meters with 500-1000 meter (about 1500 to 3300 feet) spacing between profiles. The new technique allows rapid surveys of ocean structures that change more quickly than traditional methods can observe.

Scientists studying the earth’s interior have been collecting reflections coming from within the ocean for decades but have not paid attention to other uses of the data until now. Holbrook and Schmitt said the water column echoes, although weak, are probably common in seismic reflection profiling data sets that exist all over the world and could be a huge, untapped resource for exploring ocean structure and dynamics.

Until now, the water column signal has been regarded as just noise to the seismologists," Schmitt said. "New insights into ocean mixing processes open up to us if we think about that ’noise’ as indeed containing useful signals."

Contact: Shelley Dawicki, media@whoi.edu

Shelley Dawicki | WHOI News Release
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>