Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat focuses on carbon-rich peat swamp forest fires

07.08.2003


This TERRA-MODIS image acquired 19 August 2002 shows thick haze across Central Kalimantan and spreading across the entire island of Borneo. Multiple Envisat instruments were also used during the fires to peer beneath the smoke and spot individual hotspots. Credits: NASA


Burning peat swamps in Kalimantan, Borneo. ESA-led research has established that when these peat swamps - formed over thousands of years - start to smoulder, they release vast quantities of carbon. Multiple Envisat sensors have been used to study the 2002 fires.
Credits: Dr Florian Siegert/Remote Sensing Solutions GmbH


Multiple sensors on ESA’s Envisat environmental satellite have been used to peer beneath a vast pall of smoke above tropical Borneo and detect fire hotspots – known to add millions of tons of harmful greenhouse gases to the atmosphere.

Fires occur often during the dry season on the South East Asian island of Borneo, but it isn’t only the forests that burn. Lowland tropical peat swamps are formed from layers of woody debris too waterlogged to fully decompose. Slowly deposited over thousands of years, the carbon-rich peat strata have been known to reach a thickness of up to 20 metres.

By rights these humid peat swamps shouldn’t be vulnerable to flame but during the last couple of decades the Indonesian government started draining them for conversion into agricultural land. In an unfortunate side effect the dried-up peat swamps are turned into tinderboxes – and once a peat fire begins smouldering it is almost impossible to put out.


The El Nino event back in 1997-8 caused an unusually long dry season across South East Asia – and encouraged the spread of many thousands of man-made fires across Borneo. A choking haze hung across the region, and ESA-led research later established that – due mainly to burning peat – up to 2.5 billion tonnes of climate-changing carbon was released into the atmosphere, an amount estimated to equal Europe’s entire carbon production for a year.

In 2002 a weak El Nino meant another drier than usual year: thousands of fires were again observed, and haze conditions spread all the way to Singapore. But this time ESA’s newest and most advanced environmental satellite was watching from orbit.

“We’ve made use of Envisat to monitor and analyse this disaster,” said Florian Siegert of the University of Munich and the German-based Remote Sensing Solutions GmbH, which carried out a case study on behalf of ESA. “The idea was to investigate the satellite’s performance while also obtaining valuable data on an incident with global impact - the second major fire incident in the peat swamps within five years.”

Three Envisat instruments were used – the Advanced Synthetic Aperture Radar (ASAR) could pierce the smoke clouds to provide high-resolution fire impact assessment, while the Medium Resolution Imaging Spectrometer (MERIS) could provide large scale fire scar mapping as well as identify smoke plumes whose sources could then be spotted by the Advanced Along Track Scanning Radiometer (AATSR), the most useful instrument of all when it comes to fire.

Measuring infrared wavelengths, AATSR measures surface temperature and so – used during local night for maximum effectiveness - can identify fire hotspots, Siegert explained: “The smouldering peat fires burn on the surface, but their energy release is weaker than other fires, so detecting them represented a particular challenge.

“Not all but most fires were detected by AATSR, and it is a useful instrument to assist fire fighting in future once the product becomes available in time,” Siegert added. “Aerial surveillance is too expensive to be used in this way but AATSR is cheaper, can screen a much larger area and is available for use daily.”

Envisat’s ASAR was found to work well at detecting burnt areas, which have a lower radar backscatter than forest zones in dry weather conditions. In high-resolution wide swath mode, towns and villages and even individual houses were also visible – corrugated roofs can send a strong backscatter signal if orientated towards the sensor.

This ability to map settlements might be useful in assessing future fire risk – some blazes are started illegally by settlers to clear land for cultivation, then spread out of control. Also visible to ASAR were the network of irrigation canals that have been dug to drain the peat swamps.

The Envisat data were assessed against other comparable satellite products – NOAA’s Advanced Very High Resolution Radiometer (AVHRR) and NASA’s Moderate Resolution Imaging Spectrometer (MODIS) for hotspot detection and Landsat for burn scars and damage mapping.

It was found that rainy weather lessened the effectiveness of ASAR to detect burn scars, but overall the results were very satisfactory. And by comparison to AVHRR – currently the sensor most often used operationally for fire hotspot mapping – testing has established that, used at night, Envisat’s AATSR actually detects a higher rate of hotspots.

Ground assessments of the affected area were also made, working with Indonesia’s University of Palangkaraya. It was found that on the average 20 to 30 centimetres of peat had been burnt off in Central Kalimantan, and in some cases individual craters up to 1.5 metres deep were seen.

Important but invisible damage was also done to global climate. Jack Rieley of the University of Nottingham in the UK estimates “the amount of extra carbon released into the atmosphere by the fires in 2002 could have been in the range of 200 million to a billion tonnes”.

That’s less than 1997-8, but even the low-end estimate is much more than the UK’s entire annual carbon emissions, underscoring the need for further study of this neglected phenomenon. Latest reports indicate there are once more fires kindling across the island.

“Our research has shown that tropical peatlands are an important carbon store on global scale,” said Siegert. “Repeated fires will release significantly more carbon than current climate models take into account - thus accelerating global warming.”

The European Commission is already working with Indonesia on a five-year €8.5 million scheme called the South Sumatra Forest Fire Management Project. Based west of Borneo on the Indonesian island of Sumatra, the aim of the project is to develop a model for sustainable management of land and forest resources to help limit future fire outbreaks across the whole region.

Siegert believes that space resources can help achieve this goal: “Immediate action to control fire occurrence has to be taken. ESA’s Envisat has shown it could play an important role in this task and support European activities in this field.”

Henri Laur | alfa
Further information:
http://www.esa.int/export/esaSA/SEMRA7YO4HD_earth_0.html

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>