Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat focuses on carbon-rich peat swamp forest fires

07.08.2003


This TERRA-MODIS image acquired 19 August 2002 shows thick haze across Central Kalimantan and spreading across the entire island of Borneo. Multiple Envisat instruments were also used during the fires to peer beneath the smoke and spot individual hotspots. Credits: NASA


Burning peat swamps in Kalimantan, Borneo. ESA-led research has established that when these peat swamps - formed over thousands of years - start to smoulder, they release vast quantities of carbon. Multiple Envisat sensors have been used to study the 2002 fires.
Credits: Dr Florian Siegert/Remote Sensing Solutions GmbH


Multiple sensors on ESA’s Envisat environmental satellite have been used to peer beneath a vast pall of smoke above tropical Borneo and detect fire hotspots – known to add millions of tons of harmful greenhouse gases to the atmosphere.

Fires occur often during the dry season on the South East Asian island of Borneo, but it isn’t only the forests that burn. Lowland tropical peat swamps are formed from layers of woody debris too waterlogged to fully decompose. Slowly deposited over thousands of years, the carbon-rich peat strata have been known to reach a thickness of up to 20 metres.

By rights these humid peat swamps shouldn’t be vulnerable to flame but during the last couple of decades the Indonesian government started draining them for conversion into agricultural land. In an unfortunate side effect the dried-up peat swamps are turned into tinderboxes – and once a peat fire begins smouldering it is almost impossible to put out.


The El Nino event back in 1997-8 caused an unusually long dry season across South East Asia – and encouraged the spread of many thousands of man-made fires across Borneo. A choking haze hung across the region, and ESA-led research later established that – due mainly to burning peat – up to 2.5 billion tonnes of climate-changing carbon was released into the atmosphere, an amount estimated to equal Europe’s entire carbon production for a year.

In 2002 a weak El Nino meant another drier than usual year: thousands of fires were again observed, and haze conditions spread all the way to Singapore. But this time ESA’s newest and most advanced environmental satellite was watching from orbit.

“We’ve made use of Envisat to monitor and analyse this disaster,” said Florian Siegert of the University of Munich and the German-based Remote Sensing Solutions GmbH, which carried out a case study on behalf of ESA. “The idea was to investigate the satellite’s performance while also obtaining valuable data on an incident with global impact - the second major fire incident in the peat swamps within five years.”

Three Envisat instruments were used – the Advanced Synthetic Aperture Radar (ASAR) could pierce the smoke clouds to provide high-resolution fire impact assessment, while the Medium Resolution Imaging Spectrometer (MERIS) could provide large scale fire scar mapping as well as identify smoke plumes whose sources could then be spotted by the Advanced Along Track Scanning Radiometer (AATSR), the most useful instrument of all when it comes to fire.

Measuring infrared wavelengths, AATSR measures surface temperature and so – used during local night for maximum effectiveness - can identify fire hotspots, Siegert explained: “The smouldering peat fires burn on the surface, but their energy release is weaker than other fires, so detecting them represented a particular challenge.

“Not all but most fires were detected by AATSR, and it is a useful instrument to assist fire fighting in future once the product becomes available in time,” Siegert added. “Aerial surveillance is too expensive to be used in this way but AATSR is cheaper, can screen a much larger area and is available for use daily.”

Envisat’s ASAR was found to work well at detecting burnt areas, which have a lower radar backscatter than forest zones in dry weather conditions. In high-resolution wide swath mode, towns and villages and even individual houses were also visible – corrugated roofs can send a strong backscatter signal if orientated towards the sensor.

This ability to map settlements might be useful in assessing future fire risk – some blazes are started illegally by settlers to clear land for cultivation, then spread out of control. Also visible to ASAR were the network of irrigation canals that have been dug to drain the peat swamps.

The Envisat data were assessed against other comparable satellite products – NOAA’s Advanced Very High Resolution Radiometer (AVHRR) and NASA’s Moderate Resolution Imaging Spectrometer (MODIS) for hotspot detection and Landsat for burn scars and damage mapping.

It was found that rainy weather lessened the effectiveness of ASAR to detect burn scars, but overall the results were very satisfactory. And by comparison to AVHRR – currently the sensor most often used operationally for fire hotspot mapping – testing has established that, used at night, Envisat’s AATSR actually detects a higher rate of hotspots.

Ground assessments of the affected area were also made, working with Indonesia’s University of Palangkaraya. It was found that on the average 20 to 30 centimetres of peat had been burnt off in Central Kalimantan, and in some cases individual craters up to 1.5 metres deep were seen.

Important but invisible damage was also done to global climate. Jack Rieley of the University of Nottingham in the UK estimates “the amount of extra carbon released into the atmosphere by the fires in 2002 could have been in the range of 200 million to a billion tonnes”.

That’s less than 1997-8, but even the low-end estimate is much more than the UK’s entire annual carbon emissions, underscoring the need for further study of this neglected phenomenon. Latest reports indicate there are once more fires kindling across the island.

“Our research has shown that tropical peatlands are an important carbon store on global scale,” said Siegert. “Repeated fires will release significantly more carbon than current climate models take into account - thus accelerating global warming.”

The European Commission is already working with Indonesia on a five-year €8.5 million scheme called the South Sumatra Forest Fire Management Project. Based west of Borneo on the Indonesian island of Sumatra, the aim of the project is to develop a model for sustainable management of land and forest resources to help limit future fire outbreaks across the whole region.

Siegert believes that space resources can help achieve this goal: “Immediate action to control fire occurrence has to be taken. ESA’s Envisat has shown it could play an important role in this task and support European activities in this field.”

Henri Laur | alfa
Further information:
http://www.esa.int/export/esaSA/SEMRA7YO4HD_earth_0.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>