Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA working to take the guesswork out of long-term drought prediction

07.08.2003


Dr. Bob Oglesby, senior atmospheric scientist (NASA/MSFC/Doug Stoffer)


It´s tricky, this weather business — predicting drought, floods, rain or snow, especially months in advance. But NASA scientists at the National Space Science and Technology Center in Huntsville, Ala., are working to take the guesswork out of long-term prediction.

"We´re researching methods to predict precipitation a season or more in advance," said Dr. Bob Oglesby, a senior atmospheric scientist at the research center. The key, he said, is understanding how the atmosphere interacts with the land — sometimes in a way that completely alters the expected climate of a geographic area.

"The Gulf of Mexico, for example, is what keeps the Southeast from becoming semi-arid, or in the worst-case scenario, a big desert," he said, explaining that atmospheric flow sweeps primarily from west to east. Without the gulf, states like Alabama, Tennessee and Georgia would be forced to seek moisture from the Pacific Ocean. "But a series of mountain ranges blocks the way," he said. "If it weren´t for the nearby gulf, the lush, green landscapes of Southeast might more closely resemble the semi-arid landscapes of the great plains."



Just as mountain ranges can block moisture from an entire region, ridges of atmospheric pressure act as similar obstacles — blocking out much-needed moisture where conditions are dry, resulting in a "thermal mountain effect," first identified in 1953.

"Droughts are self-perpetuating," Oglesby said. "If an area is already experiencing drought conditions, it is more likely to continue in a drought. Similarly, if an area is experiencing extremely wet conditions, that trend is also likely to continue."

This self-perpetuating cycle is due to the interaction of moisture in the soil with the atmosphere. If the amount of rain or snowfall drops below average, the soil becomes dry. Then, as the Sun heats the Earth, less moisture is available for evaporation.

With the resulting reduction in evaporation — and its cooling effects — the surface of the Earth warms, heating the atmosphere. As the atmosphere´s temperature increases, air rises. This cycle reinforces the ridge of high pressure, enhancing its abilities to block the flow of moisture from bodies of water as well as reducing the likelihood of thunderstorm formation.

Drought conditions also may be predicted by studying other factors, including sea surface temperature variations such as those associated with ocean warming effects from El Niño, and ocean cooling effects from La Niña; north Atlantic oscillation, or air flow; and snow cover in surrounding regions.

Oglesby´s research uses computer models to simulate and predict weather conditions, using data such as soil moisture, precipitation and Earth´s surface temperature. The biggest challenge in making long-term predictions, he said, is a lack of sufficient data on soil moisture, especially moisture in lower layers of the soil.

"If someone could provide us with the state of soil moisture over a sufficiently large area, we can begin to predict its impact on precipitation over the next season or two," he said. Oglesby sees hope for better data in the future from NASA remote sensing technology that gleans information using satellite or flights over select areas.

Above-average rainfall or snow in the winter or spring can increase soil moisture to levels needed to help break the cycle of drought. But an average series of short, light rain showers — common in much of the South — are not generally enough, said Oglesby. "Even though surface soil may be wetted periodically, light rains may not drop enough moisture to reach lower soil areas. These perpetually dry areas, in turn, cause top soil to dry more quickly — once again hindering the Earth´s natural cooling process."

But there is hope even in the midst of drought conditions. "Even in a dry, Alabama summer, it rains," said Oglesby, noting that large-scale circulation and thunderstorms in the summer can also break the cycle of drought. "The trick," he said, "is replenishing the moisture in the soil before it´s too late."

From NASAs Marshall Space Flight Center in Huntsville, Oglesby has co-authored three research papers since 2001, published in the Journal of Climate and the Journal of Geophysical Research. Topics include diagnosing warm season precipitation, thresholds in atmosphere-soil moisture interactions and the predictability of winter snow cover over the Western United States.

Oglesby has a bachelors degree in physical geography from the University of California in Davis and a doctorate in atmospheric dynamics from Yale University in New Haven, Conn. He is based at the Global Hydrology and Climate Center, one of seven science research centers at the National Space Science and Technology Center, a partnership with NASAs Marshall Space Flight Center, Alabama universities, industry and federal agencies.

Contact: Steve Roy, steve.roy@msfc.nasa.gov

Steve Roy | NSSTC News
Further information:
http://www.msfc.nasa.gov/news

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>