Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA working to take the guesswork out of long-term drought prediction


Dr. Bob Oglesby, senior atmospheric scientist (NASA/MSFC/Doug Stoffer)

It´s tricky, this weather business — predicting drought, floods, rain or snow, especially months in advance. But NASA scientists at the National Space Science and Technology Center in Huntsville, Ala., are working to take the guesswork out of long-term prediction.

"We´re researching methods to predict precipitation a season or more in advance," said Dr. Bob Oglesby, a senior atmospheric scientist at the research center. The key, he said, is understanding how the atmosphere interacts with the land — sometimes in a way that completely alters the expected climate of a geographic area.

"The Gulf of Mexico, for example, is what keeps the Southeast from becoming semi-arid, or in the worst-case scenario, a big desert," he said, explaining that atmospheric flow sweeps primarily from west to east. Without the gulf, states like Alabama, Tennessee and Georgia would be forced to seek moisture from the Pacific Ocean. "But a series of mountain ranges blocks the way," he said. "If it weren´t for the nearby gulf, the lush, green landscapes of Southeast might more closely resemble the semi-arid landscapes of the great plains."

Just as mountain ranges can block moisture from an entire region, ridges of atmospheric pressure act as similar obstacles — blocking out much-needed moisture where conditions are dry, resulting in a "thermal mountain effect," first identified in 1953.

"Droughts are self-perpetuating," Oglesby said. "If an area is already experiencing drought conditions, it is more likely to continue in a drought. Similarly, if an area is experiencing extremely wet conditions, that trend is also likely to continue."

This self-perpetuating cycle is due to the interaction of moisture in the soil with the atmosphere. If the amount of rain or snowfall drops below average, the soil becomes dry. Then, as the Sun heats the Earth, less moisture is available for evaporation.

With the resulting reduction in evaporation — and its cooling effects — the surface of the Earth warms, heating the atmosphere. As the atmosphere´s temperature increases, air rises. This cycle reinforces the ridge of high pressure, enhancing its abilities to block the flow of moisture from bodies of water as well as reducing the likelihood of thunderstorm formation.

Drought conditions also may be predicted by studying other factors, including sea surface temperature variations such as those associated with ocean warming effects from El Niño, and ocean cooling effects from La Niña; north Atlantic oscillation, or air flow; and snow cover in surrounding regions.

Oglesby´s research uses computer models to simulate and predict weather conditions, using data such as soil moisture, precipitation and Earth´s surface temperature. The biggest challenge in making long-term predictions, he said, is a lack of sufficient data on soil moisture, especially moisture in lower layers of the soil.

"If someone could provide us with the state of soil moisture over a sufficiently large area, we can begin to predict its impact on precipitation over the next season or two," he said. Oglesby sees hope for better data in the future from NASA remote sensing technology that gleans information using satellite or flights over select areas.

Above-average rainfall or snow in the winter or spring can increase soil moisture to levels needed to help break the cycle of drought. But an average series of short, light rain showers — common in much of the South — are not generally enough, said Oglesby. "Even though surface soil may be wetted periodically, light rains may not drop enough moisture to reach lower soil areas. These perpetually dry areas, in turn, cause top soil to dry more quickly — once again hindering the Earth´s natural cooling process."

But there is hope even in the midst of drought conditions. "Even in a dry, Alabama summer, it rains," said Oglesby, noting that large-scale circulation and thunderstorms in the summer can also break the cycle of drought. "The trick," he said, "is replenishing the moisture in the soil before it´s too late."

From NASAs Marshall Space Flight Center in Huntsville, Oglesby has co-authored three research papers since 2001, published in the Journal of Climate and the Journal of Geophysical Research. Topics include diagnosing warm season precipitation, thresholds in atmosphere-soil moisture interactions and the predictability of winter snow cover over the Western United States.

Oglesby has a bachelors degree in physical geography from the University of California in Davis and a doctorate in atmospheric dynamics from Yale University in New Haven, Conn. He is based at the Global Hydrology and Climate Center, one of seven science research centers at the National Space Science and Technology Center, a partnership with NASAs Marshall Space Flight Center, Alabama universities, industry and federal agencies.

Contact: Steve Roy,

Steve Roy | NSSTC News
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>