Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find "fingerprint" of human activities in recent tropopause height changes

25.07.2003


Scientists from the Lawrence Livermore National Laboratory have determined that human-induced changes in ozone and well-mixed greenhouse gases are the primary drivers of recent changes in the height of the tropopause.



Earlier research has shown that increases in the height of the tropopause over the past two decades are directly linked to stratospheric ozone depletion and increased greenhouse gases.

The new research uses climate model results to provide more quantitative estimates of the relative contributions of natural and human influences to overall tropopause height changes. This work indicates that 80 percent of the roughly 200-meter increase in tropopause height from 1979 to 1999 is directly linked to human activities. Smaller tropopause height increases over the first half of the 20th century are largely caused by natural variations in volcanic aerosols and solar irradiance.


The tropopause is the boundary between the lowest layer of the atmosphere -- the turbulently mixed troposphere -- and the more stable stratosphere. It lies roughly 10 miles above the Earth´s surface at the equator and five miles above the poles. The location of the tropopause is sensitive to changes in vertical profiles of atmospheric temperature. The Livermore research attempts to understand how different mechanisms affect atmospheric temperatures, and hence tropopause height. It is the first study to show that a model-predicted "fingerprint" of tropopause height changes can be identified in observations.

The paper describing this work, entitled, "Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes," appears in the July 25 edition of Science. It involves a team of Livermore scientists (Benjamin Santer, Karl Taylor and James Boyle) and researchers from Lawrence Berkeley National Laboratory, the National Center for Atmospheric Research, the Institut für Physik der Atmosphäre in Germany and the University of Birmingham in the United Kingdom.

Using a computer model of the climate system, the Lab scientists and their colleagues examined changes in both man-made forcings (well-mixed greenhouse gases, tropospheric and stratospheric ozone, and the scattering effects of sulfate aerosols) and natural external forcings (solar irradiance and volcanic aerosols). Experiments were performed with a model developed jointly by the National Center for Atmospheric Research and Los Alamos National Laboratory. The innovative aspect of these model runs is that climate forcings were varied both individually and in concert. This allowed the researchers to estimate the contribution of each forcing to overall changes in atmospheric temperature and tropopause height. Completion of this very large ensemble of model runs was made possible by recent developments in high performance computing capabilities at U.S. Department of Energy and National Science Foundation facilities. Output from these and other related climate model runs is available at http://www.nersc.gov/projects/gcm_data/.

The model results reveal the key drivers of recent tropopause height increases -- human-caused changes in well-mixed greenhouse gases and stratospheric ozone -- act primarily through warming of the troposphere (greenhouse gases) and cooling of the lower stratosphere (ozone). Both of these effects increase tropopause height.

"Tropopause height is an integrated indicator of human-induced climate change," Santer said. "It reflects global-scale changes in the temperature structure of the atmosphere. Our research shows that the increase in tropopause height over the second half of the 20th century was predominantly due to human activity, and provides independent support for claims of recent tropospheric warming."

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>