Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find "fingerprint" of human activities in recent tropopause height changes


Scientists from the Lawrence Livermore National Laboratory have determined that human-induced changes in ozone and well-mixed greenhouse gases are the primary drivers of recent changes in the height of the tropopause.

Earlier research has shown that increases in the height of the tropopause over the past two decades are directly linked to stratospheric ozone depletion and increased greenhouse gases.

The new research uses climate model results to provide more quantitative estimates of the relative contributions of natural and human influences to overall tropopause height changes. This work indicates that 80 percent of the roughly 200-meter increase in tropopause height from 1979 to 1999 is directly linked to human activities. Smaller tropopause height increases over the first half of the 20th century are largely caused by natural variations in volcanic aerosols and solar irradiance.

The tropopause is the boundary between the lowest layer of the atmosphere -- the turbulently mixed troposphere -- and the more stable stratosphere. It lies roughly 10 miles above the Earth´s surface at the equator and five miles above the poles. The location of the tropopause is sensitive to changes in vertical profiles of atmospheric temperature. The Livermore research attempts to understand how different mechanisms affect atmospheric temperatures, and hence tropopause height. It is the first study to show that a model-predicted "fingerprint" of tropopause height changes can be identified in observations.

The paper describing this work, entitled, "Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes," appears in the July 25 edition of Science. It involves a team of Livermore scientists (Benjamin Santer, Karl Taylor and James Boyle) and researchers from Lawrence Berkeley National Laboratory, the National Center for Atmospheric Research, the Institut für Physik der Atmosphäre in Germany and the University of Birmingham in the United Kingdom.

Using a computer model of the climate system, the Lab scientists and their colleagues examined changes in both man-made forcings (well-mixed greenhouse gases, tropospheric and stratospheric ozone, and the scattering effects of sulfate aerosols) and natural external forcings (solar irradiance and volcanic aerosols). Experiments were performed with a model developed jointly by the National Center for Atmospheric Research and Los Alamos National Laboratory. The innovative aspect of these model runs is that climate forcings were varied both individually and in concert. This allowed the researchers to estimate the contribution of each forcing to overall changes in atmospheric temperature and tropopause height. Completion of this very large ensemble of model runs was made possible by recent developments in high performance computing capabilities at U.S. Department of Energy and National Science Foundation facilities. Output from these and other related climate model runs is available at

The model results reveal the key drivers of recent tropopause height increases -- human-caused changes in well-mixed greenhouse gases and stratospheric ozone -- act primarily through warming of the troposphere (greenhouse gases) and cooling of the lower stratosphere (ozone). Both of these effects increase tropopause height.

"Tropopause height is an integrated indicator of human-induced climate change," Santer said. "It reflects global-scale changes in the temperature structure of the atmosphere. Our research shows that the increase in tropopause height over the second half of the 20th century was predominantly due to human activity, and provides independent support for claims of recent tropospheric warming."

Anne Stark | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>