Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space engineering helps drill better holes in planet Earth

21.07.2003


Expertise derived from working on the joint NASA-ESA Cassini-Huygens mission to Saturn and its moon Titan is now being applied to underground drilling machines. This is providing tunnelling engineers with an improved ability to virtually "see" some 40 metres into solid rock and pinpoint obstacles ahead.


Trude - the world’s biggest tunnel drilling machine


Tunnel drilling on Earth gains from Saturn/Titan mission



It´s an old miners´ expression: "There is darkness in front of the pick". Billions of years of geological history has laid down complex folds of strata, patterns of faulting and embedded irregular objects in the ground beneath our feet. The character of the earth can and often does change unexpectedly with every metre excavated.
But with modern high-speed tunnelling, sudden geological shifts may damage the cutting head of drilling machines and lead to expensive delays in multi-million Euro excavation projects.

German tunnelling company Herrenknecht AG - famous for drilling the Elbe tunnel in Hamburg using the world´s single largest tunnelling machine - has developed a new method of charting what lies ahead beyond the tunnel face.



Geologists have mapped the deep structure of the Earth by monitoring how seismic waves from earthquakes echo through our planet. On the same principle but a smaller scale, seismic waves can be sent through a tunnel face, and significant discontinuities in the rock mass will reflect waves again back. If necessary serious obstacles can then be removed, preventing damage to the drilling machine and reducing overall downtime.

Herrenkneckt AG has originated a way to do this even as drilling carries on. Their idea is to fit specially adapted transmitters and microphones onto a drilling machine´s rotary shear blades. The transmitters project sound into the ground every second, while the microphones record seismic reflections. A computer behind the tunnelling machine evaluates measured and statistical seismic data to visualise significant geological shifts in the earth ahead.

However the initial transmitter used was a commercial shaker designed for industrial vibration tests, whose function was not fully satisfactory. Herrenknecht AG knew all components of a more efficient seismic probing system would have to be precisely designed to work reliably under the extreme stresses of the rock face. With on-the-job repair almost impossible, extensive pre-operational testing was required.

It was this requirement that led Herrenknecht AG engineers to approach MST Aerospace – ESA´s Technology Transfer broker in Germany – back in September 1998 to put them in touch with a partner with experience in space-related mechanical engineering.

"We were looking for a competent partner in acoustic design and vibration analyses," says Andreas Kassel, a geophysicist with Herrenknecht AG, responsible for the development of prediction methods for tunnel boring machines (TBMs). "We contacted MST as we hoped they had already tackled similar vibration problems for launcher and space missions. We know that for space extreme reliable technical solutions are needed and that was what we were looking for."

In March 1999 their first meeting took place with Astro- und Feinwerktechnik Adlershof GmbH, a start-up of Forschungszentrum Berlin-Adlershof of the German Aerospace Centre DLR. This firm has developed specialist electro-mechanical hardware for several space mission payloads, most notably ESA´s Cosmic Dust Analyser for the Cassini spacecraft currently on its way to Saturn along with Huygens, ESA´s Titan lander.

In the process the firm also has acquired extensive experience of testing components for space by simulating extreme conditions, in particular using vibration actuators. In autumn 2001, Herrenknecht AG awarded Astro- und Feinwerktechnik Adlershof GmbH the contract to develop a transmitter prototype.

It was delivered the following year and swiftly judged a success: "We found it achieved improvements in pulse compression and thus in spatial resolution of our seismic reflection method by an order of magnitude," Kassel explains.

These new seismic probing transmitters have been successfully tested on a 9.8m-diameter TBM shield excavating the 1,600m-long Pannerdensch Kanaal twin tunnel near Arnhem, part of the Netherlands new 160km Betuweroute freight railway line. The transmitters are also due to be installed on two further TBMs for an excavation in Kuala Lumpur, Malaysia.

MST Aerospace in Germany is part of ESA´s Technology Transfer Programmes network of technology brokers. The objective is to stimulate the spin-off of space technologies in the non-space sector.

"Our experience shows that the use of innovative technologies produced for European space programmes can improve our day-to-day life on Earth," says Pierre Brisson, head of ESA´s Technology Transfer Programme. "Since 1991 when we started our programme, more than 160 transfers have generated EUR 25 million in turnover for European space companies and EUR 270 million for the non-space industries involved."

The virtual market place "www.technology-forum.com", run by MST Aerospace on behalf of ESA, is available to European industry to facilitate the process of technology exchange. Advanced technologies ready and available are presented, requests for specific technological solutions can be posted, and solutions offered.

Pierre Brisson | European Space Agency
Further information:
http://www.esa.int
http://www.technology-forum.com

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>