Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists with Hawaii Ocean Mixing Experiment Closing in on Puzzle of Ocean Energy

18.07.2003


Using an array of technologies and instruments, scientists in the Hawaii Ocean-Mixing Experiment (HOME), a nearly $18 million National Science Foundation-sponsored project focused on pinpointing, dissecting, and analyzing ocean mixing, captured intriguing phenomena including undersea waves that spanned nearly 1,000 feet


Temperature was recorded at several depths on a mooring set in 1,453 meters of water along the Hawaiian Ridge during the Home project. Twice on this day, at the same frequency as the tide, the graphic shows displacements of about 300 meters. For comparison, the surface tidal range in Honolulu is less than a meter.


Scientists from six institutions, including Scripps Institution of Oceanography at the University of California, San Diego, are closing the gap in deciphering one of the most puzzling aspects of the world’s oceans. "Ocean mixing," the complex motions of seawater that span large-scale phenomena down to tiny, centimeter-sized turbulent motion, serves a key role in redistributing heat throughout the oceans. Although ocean mixing is a key element in the climate system and important for sea life for dispersing nutrients, a mystery remains in accounting for how its processes unfold.

A new research paper in the journal Science describes ocean mixing in unprecedented detail. Using an array of technologies and instruments, scientists in the Hawaii Ocean-Mixing Experiment (HOME), a nearly $18 million National Science Foundation-sponsored project focused on pinpointing, dissecting, and analyzing ocean mixing, captured intriguing phenomena including undersea waves that spanned nearly 1,000 feet. The paper in the July 18 issue of Science is the first effort by HOME investigators to collectively document their findings.

The HOME scientists chose the Hawaiian Ridge, a 1,600-mile largely submerged volcanic mountain chain that stretches from the Big Island of Hawaii to Midway Island, due to its rough topography, including large underwater mountains and valleys. Such areas are sometimes referred to as the "stirring rods" of the oceans.



Prior to the HOME project, areas such as the Hawaiian Ridge were hypothesized to be a major energy pathway for ocean mixing turbulence. Traveling across the Pacific, oceanic tides crash upon the Hawaiian Ridge and dissipate. To help explain how such areas help mix warm low latitude waters and cool polar waters, HOME investigators undertook a comprehensive survey to track the cascade of ocean energy and turbulence.

"One of the triumphs of the HOME experiment was being able to measure the cascade from thousands of meters down to centimeter scales," said Dan Rudnick, a professor of oceanography at Scripps and lead author of the Science paper. "I don’t think this effort is rivaled in terms of measuring detailed dissipation over a topographic feature."

HOME scientists, using the Scripps research vessel Roger Revelle, the flagship of the Scripps fleet; the towed instrument SeaSoar, which took a variety of measurements of upper ocean properties; a new Doppler sonar developed by Scripps Professor Robert Pinkel; and a variety of other instruments and equipment, found that the Hawaiian Ridge is indeed a site with vastly increased ocean mixing. They documented undersea internal wave energy that was enhanced 10 times at the Hawaiian Ridge as compared with normal open ocean areas.

With the details of the cascading processes described in the Science paper, the coauthors helped further close the gap of how energy is dissipated in ocean mixing. But the paper notes that the energy puzzle is not completely solved with these results. Even more energy for ocean mixing must be found elsewhere.

"Our conclusion is interesting because we found that there was certainly a lot of energy loss occurring at the Hawaiian Ridge, but much of it propagates away and doesn’t get dissipated at the ridge. So we’re approaching closure of this phenomenon," said Rudnick. "But until we have a firmer understanding of this process-until we get a better handle on mixing-climate models will be of limited use."

In addition to Rudnick, coauthors of the study include Joseph P. Martin, Robert Pinkel, and Luc Rainville from Scripps Institution; Timothy J. Boyd, Gary D. Egbert, Jody M. Klymak, Murray D. Levine, James N. Moum, and Jonathan D. Nash from Oregon State University; Russell E. Brainard from the Pacific Islands Fisheries Science Center; Glenn S. Carter, Michael C. Gregg, Eric Kunze, Craig M. Lee, and Thomas B. Sanford from the University of Washington; Peter E. Holloway from the University of New South Wales, Australia; and Douglas S. Luther and Mark A. Merrifield from the University of Hawaii.

Planning for the HOME project began in 1996 and the final field phases of the project were concluded last month. Scientific analysis of the data set is planned through 2005.

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps is celebrating its centennial in 2003.

Mario Aguilera | Scripps Institution
Further information:
http://scripps.ucsd.edu
http://scripps100.ucsd.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>