Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Location of Deep Convection May Exist in North Atlantic, Altering Views of Atmosphere-Ocean Interaction

18.07.2003


Deep convection, or mixing, of ocean waters in the North Atlantic, widely thought to occur in only the Labrador Sea and the Mediterranean, may occur in a third location first proposed nearly 100 years ago by the explorer and oceanographer Fridtjof Nansen. The findings, reported this week in the journal Nature, may alter thinking about the ocean’s overturning circulation that affects earth’s climate.



An international team of scientists reports in Nature that convection, a process that forms deep waters of the world’s oceans and plays a major role in the climate system, may also be occurring in the Irminger Sea east of Greenland because of a sporadic and localized atmospheric phenomenon known as the Greenland tip jet.

Lead author Robert Pickart of the Woods Hole Oceanographic Institution (WHOI) says the study places an additional complexity to the climate puzzle that must now be taken into account in observations and models, and that the implications of an additional source of Labrador Sea Water are far-reaching.


"I believe we found the smoking gun in the debate about deep water formation east of Greenland," Pickart says. "This study essentially ends a 100-year controversy, and I am convinced we will acquire the data from the ocean profiling system now in place in the Irminger Sea to prove it conclusively in the future."

The Labrador Sea and the Mediterranean have been thought to be the only locations where open-ocean convection leads to formation of deep water in the North Atlantic to depths of 1500-2000 meters. Polar air blows across Canada during the winter, removing heat over much of the Labrador Sea and causing the surface layers to sink and mix into deep waters. New evidence rekindled interest in Nansen’s idea that a large amount of Labrador Sea Water may actually be formed outside the Labrador Sea in the Irminger Sea.

A recent study by atmospheric scientists focused attention on a phenomenon known as the Greenland tip jet, a narrow, sporadic atmospheric jet that develops off of Cape Farewell when high-level northwesterly winds descend on the eastern or leeward side of Greenland and accelerate as they drop down over the ocean, drawing cold air over the southern Irminger Sea in a relatively small area. Pickart’s team, consisting of WHOI colleague Mike Spall and researchers at the Danish Meteorological Institute, University of Toronto, and Colorado Research Associates Division recognized that this was likely the cause of deep convection in the Irminger Sea. They pulled together corroborating evidence from atmospheric models, meteorological data, remote sensing fields, and oceanic modeling in order to make their case.

Nansen first proposed the idea nearly 100 years ago but much debate and controversy followed in the scientific literature and the notion was never embraced by the oceanographic community. Pickart knew nothing of Nansen’s forgotten theory until a few years ago when he gave a lecture about the "new" idea, and was told by a Norwegian scientist that it had been proposed but discounted decades ago. Intrigued as to why the idea died out, he hired a German translator and reviewed many journal articles for evidence. He is currently working on a popular science book on the demise of Nansen’s hypothesis.

Pickart and colleagues may be able to finally prove the idea with a new ocean profiling system deployed in the Irminger Sea three years ago. Pickart will head to sea in late July to recover and redeploy the instrument for another year, and a five-year deployment is planned by Institution colleagues starting in 2005.

About WHOI

WHOI is a private, independent marine research and engineering, and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>