Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Location of Deep Convection May Exist in North Atlantic, Altering Views of Atmosphere-Ocean Interaction

18.07.2003


Deep convection, or mixing, of ocean waters in the North Atlantic, widely thought to occur in only the Labrador Sea and the Mediterranean, may occur in a third location first proposed nearly 100 years ago by the explorer and oceanographer Fridtjof Nansen. The findings, reported this week in the journal Nature, may alter thinking about the ocean’s overturning circulation that affects earth’s climate.



An international team of scientists reports in Nature that convection, a process that forms deep waters of the world’s oceans and plays a major role in the climate system, may also be occurring in the Irminger Sea east of Greenland because of a sporadic and localized atmospheric phenomenon known as the Greenland tip jet.

Lead author Robert Pickart of the Woods Hole Oceanographic Institution (WHOI) says the study places an additional complexity to the climate puzzle that must now be taken into account in observations and models, and that the implications of an additional source of Labrador Sea Water are far-reaching.


"I believe we found the smoking gun in the debate about deep water formation east of Greenland," Pickart says. "This study essentially ends a 100-year controversy, and I am convinced we will acquire the data from the ocean profiling system now in place in the Irminger Sea to prove it conclusively in the future."

The Labrador Sea and the Mediterranean have been thought to be the only locations where open-ocean convection leads to formation of deep water in the North Atlantic to depths of 1500-2000 meters. Polar air blows across Canada during the winter, removing heat over much of the Labrador Sea and causing the surface layers to sink and mix into deep waters. New evidence rekindled interest in Nansen’s idea that a large amount of Labrador Sea Water may actually be formed outside the Labrador Sea in the Irminger Sea.

A recent study by atmospheric scientists focused attention on a phenomenon known as the Greenland tip jet, a narrow, sporadic atmospheric jet that develops off of Cape Farewell when high-level northwesterly winds descend on the eastern or leeward side of Greenland and accelerate as they drop down over the ocean, drawing cold air over the southern Irminger Sea in a relatively small area. Pickart’s team, consisting of WHOI colleague Mike Spall and researchers at the Danish Meteorological Institute, University of Toronto, and Colorado Research Associates Division recognized that this was likely the cause of deep convection in the Irminger Sea. They pulled together corroborating evidence from atmospheric models, meteorological data, remote sensing fields, and oceanic modeling in order to make their case.

Nansen first proposed the idea nearly 100 years ago but much debate and controversy followed in the scientific literature and the notion was never embraced by the oceanographic community. Pickart knew nothing of Nansen’s forgotten theory until a few years ago when he gave a lecture about the "new" idea, and was told by a Norwegian scientist that it had been proposed but discounted decades ago. Intrigued as to why the idea died out, he hired a German translator and reviewed many journal articles for evidence. He is currently working on a popular science book on the demise of Nansen’s hypothesis.

Pickart and colleagues may be able to finally prove the idea with a new ocean profiling system deployed in the Irminger Sea three years ago. Pickart will head to sea in late July to recover and redeploy the instrument for another year, and a five-year deployment is planned by Institution colleagues starting in 2005.

About WHOI

WHOI is a private, independent marine research and engineering, and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>