Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust deals droughts, deluges

16.07.2003


Dust from the Sahara Desert in Africa may help modify clouds and rainfall both in Africa and across the tropical North Atlantic, as far away as Barbados, according to a study that uses 16 years of data from NASA satellites, ground measurements and computer models.


While the previous NOAA images show aerosols blowing across the ocean, these two images from NASA’s Total Ozone Mapping Spectrometer (TOMS) instrument show dust coming off regional land sources in Africa as they follow their path across the Atlantic. The TOMS instrument aboard the Earthprobe TOMS satellite, captured these images of the dust event from June 17, 1999, as it leaves Africa.

The second image (below) from July 2, 1999, shows the progression of this event as it approaches North America.

Credit: "Laboratory for Atmospheres TOMS Project, NASA Goddard Space Flight Center"




The dust particles act as surfaces, or kernels, for water vapor to attach to in low clouds, and for ice crystals to form around in higher clouds.

The study’s authors, Natalie Mahowald, a researcher at the National Center for Atmospheric Research, Boulder, Colo., and University of California, Santa Barbara (UCSB), and Lisa Kiehl, a graduate student at UCSB, believe the interaction between clouds and aerosols is critical for understanding climate change. Clouds play a pivotal role in reflecting and absorbing the Sun’s rays. Clouds also absorb and reflect radiation emitted from Earth’s surface. The dust and cloud interplay also helps explain rainfall patterns over the Sahara Desert and south of that area.


In low clouds such as cumulus and stratocumulus clouds, near the Sahara desert, water attaches to the dust particles. Higher dust concentrations can suppress rainfall and enhance drought conditions, by dispersing water among the dust particles, so that water droplets are not heavy enough to fall. This creates more thin low clouds, and less rain.

In high clouds, such as cirrus, cirrostratus, and deep convective clouds, there is some evidence that dust particles over wetter regions south of the desert provide surfaces for ice crystals to form around. These ice crystals grow rapidly, drawing moisture from surrounding cloud droplets, become heavier and fall, generating more rain and reducing the total amount of high clouds.

Dust from North Africa, where the desert lies, has blown increasingly into the atmosphere since the 1960s. Though the reasons for this are not clearly understood, some scientists believe the increase may be linked to human activity.

The study, which appeared in a recent issue of Geophysical Research Letters, used 16 years of monthly mean observations from satellites, ground stations, and computer models to look at the relationship between dust particles in the air, called mineral aerosols, and cloud properties.

Data on how many and how thick clouds were, and cloud top pressure and temperature, came from NASA’s International Satellite Cloud Climatology Project (ISCCP). ISCCP data covered 1984 to 1999 and combined Advanced Very High Resolution Radiometer (AVHRR) data from 3 satellites created and launched by NASA, including GOES-8, GOES-10, and GOES-12.

The study also used data from the Total Ozone Mapping Spectrometer (TOMS) instrument to determine the amount of radiation being absorbed by aerosols between 1984 and 1990. Data from the ground in Barbados was collected by the University of Miami.

This is the first long-term regional study to confirm observations that mineral aerosols in both low and high clouds can act as kernels for precipitation to form around. It is also the first study to suggest that African dust interacts with clouds over a large region.

The study found a positive correlation between low altitude cloud amounts and dust at the coast of North Africa, which supports the theory that dust particles act as a place for water droplets to form around in thin low clouds.

The researchers also found a negative association between high clouds and dust along the equator across North Africa and the Atlantic Ocean. That is, more dust creates heavy ice particles in high clouds that rain down and ultimately reduce high cloud amounts. Still, since there are no long term ground measurements for dust and high clouds in these areas, and because it has been hard to measure these high clouds with satellites, it is difficult to make firm conclusions regarding ice forming around dust kernels, high clouds and rainfall.

NASA’s Earth Science Enterprise is committed to studying the primary causes of the Earth system variability, including both natural and human-induced causes.

NASA funded the study in cooperation with National Science Foundation. The study exemplifies the unique advantages of space-based platforms for monitoring global transport, interactions, and feedbacks of aerosols.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0618dust.html

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>