Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Getting the dirt’: from space, sky and ground, scientists and students dig high and low for soil moisture data

10.07.2003


A water-sensing satellite orbits more than 400 miles above Earth. An instrument-packed airplane circles 25,000 feet above three U.S. states and Brazil. Scientists, college students and other volunteers troop into the countryside, armed with sensors and notepads. It’s all about "getting the dirt." In this case, collecting detailed information about the soil.


Scientists and students take soil moisture measurements. (NASA/MSFC)



The objectives are two-fold — validating soil moisture data gleaned from satellites and working to find the optimum instrument for conducting soil moisture remote sensing. By learning how to better gauge the amount of moisture in the soil, scientists are pursuing the long-range goal of eventually helping to improve the accuracy of weather forecasts and better estimate crop yields through remote-sensing methods.

Led by Dr. Thomas Jackson of the U.S. Department of Agriculture (USDA), Soil Moisture Experiments in 2003, or SMEX03, is a collaboration between NASA, the USDA’s Agricultural Research Service, the Brazilian Agricultural Research Corporation, several academic institutions across the United States, and the Center for Hydrology, Soil Climatology, and Remote Sensing (HSCaRS) of Alabama A&M University in Huntsville — a NASA-sponsored Minority University Research Center that promotes minority and women student involvement in Earth science research.


There are three phases to the project’s field operations, which began June 22 in Huntsville. The project gathered data from Alabama and Georgia through July 2, moved to Oklahoma to collect data until July 19, and will finish in Brazil Sept. 16-26.

"By gathering comprehensive soil moisture data from space, air and land, we hope to better understand how these measurements correlate and how this information can help farmers, weather forecasters and others who depend on Mother Nature for their livelihood, said Dr. Charles Laymon, a hydrologist and remote sensing scientist with Universities Space Research Association at the Global Hydrology and Climate Center (GHCC) in Huntsville.

An improved understanding of moisture in the soil, for example, could ultimately aid irrigation efforts — a costly proposition for most farmers. Armed with better soil moisture information, farmers could save crops by irrigating when and precisely where necessary, or save money by refraining from irrigation when it’s not needed. This is important, Laymon said, because simple ground-based observations don’t always tell the whole story. That’s why scientists leading the Soil Moisture Experiments in 2003 will look skyward for much of their data.

Aqua, a NASA satellite launched in May 2002, will fill in part of the puzzle. Orbiting about 430 miles above Earth, its sensors collect information about Earth’s water cycle — including water vapor in the atmosphere, clouds, precipitation, and snow and ice cover. The Advanced Microwave Scanning Radiometer for Earth Observing Systems, or AMSR-E — along with AMSR, a Japanese National Space Development Agency instrument, are the Aqua instruments scientists hope can provide information about soil moisture.

A challenge, Laymon said, will be taking the "big picture" offered by AMSR-E and filling in the gaps. "AMSR-E was designed primarily to monitor oceans and polar ice," he said. "So the sensor provides a very broad view of terrestrial soil moisture. To get a more detailed look at soil moisture, GHCC scientists will use mathematical algorithms to fine-tune AMSR-E’s results, and more importantly, correlate the satellite data to measurements gleaned by airborne instruments in the sky and by people on the ground."

The research aircraft are NASA’s P-3B, a four-engine turboprop, and DC-8, a four-engine jet. Equipped with a suite of remote sensing instruments developed for airborne observations in support of satellite validation, they will document patterns of surface moisture by measuring microwave energy in units of brightness temperature and power reflected off the surface.

On the ground, teams of scientists, college students and volunteers — rain or shine — will disperse into the countryside daily, taking measurements that include soil moisture and temperature, ground cover type and plant height.

"The students have an opportunity to get hands-on experience in field research as well as laboratory analysis of soil samples, said Dr. Tommy Coleman, director of HSCaRS at Alabama A&M. "It also gives them perspective on how to approach research tasks in an orderly fashion."

One student volunteer is Lakesha Fowler, a junior from Alabama A&M University. A civil engineering major who eventually wants to plan cities and communities, Fowler will spend two weeks sampling soil at several rural sites near the Alabama-Tennessee state line. "I hope to gain more knowledge about soil and its water content," she said. "This project will give me insight that’s difficult to gain in a classroom."

Participating NASA centers include NASA’s Marshall Space Flight Center in Huntsville, NASA’s Goddard Space Flight Center in Greenbelt, Md., and NASA’s Jet Propulsion Laboratory in Pasadena, Calif. The GHCC is one of seven research centers at the National Space Science and Technology Center in Huntsville, a partnership among the Marshall Center, Alabama research universities, industry and other federal agencies. Aircraft used for SMEX03 are based at NASA’s Wallops Flight Facility in Wallops Island, Va., and Dryden Flight Research Center in Edwards, Calif.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/NSSTC/news/releases/2003/N03-005.html
http://hydrolab.arsusda.gov/smex03/
http://www.hscars.aamu.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>