Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the ’real’ waterworld

10.07.2003


Science fiction writers and movie-makers have imagined a world completely covered by an ocean, but what if one really existed? Would such a world support life, and what would this life be like?



ESA could make science fiction become science fact when it finds such a world, if the predictions of a group of European astronomers are correct. The ESA mission Eddington, which is now in development, could be the key.
At the recent ESA co-sponsored ’’Towards Other Earths’’ conference, nearly 250 of the world’s leading experts in planet detection discussed the strategy for finding Earth-like worlds. Alain Léger and colleagues of the Institut d’Astrophysique Spatiale, France, described a new class of planets that could be awaiting discovery: ’’waterworlds’’.

According to Léger and his colleagues, these waterworlds would contain about six times the mass of Earth, in a sphere twice as wide as our planet. They would possess atmospheres and orbit their parent star at roughly the same distance that the Earth is from the Sun. Most excitingly, an ocean of water entirely covers each world and extends over 25 times deeper than the average depth of the oceans on Earth.



A hundred kilometres deep

According to calculations, the internal structure of a waterworld would consist of a metallic core with a radius of about 4000 kilometres. Then there would be a rocky mantle region extending to a height of 3500 kilometres above the core’s surface, covered by a second mantle made of ice up to 5000 kilometres thick. Finally, an ocean blankets the entire world to a depth of 100 kilometres, with an atmosphere on top of this.

With twice the radius of the Earth, they will be easily spotted by the Eddington spacecraft, which is designed to detect planets down to half the size of the Earth. "A waterworld passing in front of a star, somewhat cooler than the Sun, will cause a dimming in the stellar light by almost one part in a thousand. That’s almost ten times larger than the smallest variation Eddington is designed to detect. So, waterworlds – if they exist – will be a very easy catch for Eddington," says Fabio Favata, ESA’s Eddington Project Scientist.

The CNES/ESA mission Corot, which is a smaller, precursor mission to Eddington due for launch around 2005, may also be just able to glimpse them, if they are close enough to their parent stars.

Origins of life

Scientists are now asking if such worlds could support life, and what would it be like, especially since water is a prime ingredient for life on Earth. While waterworlds seem to have everything to sustain life, there is a big question mark over whether they could actually allow it to start in the first place.

One of the leading theories for life’s origin in deep oceans is that it requires hot springs on the ocean floor, heated by volcanic activity like the ’’black smokers’’ found here on Earth. On a waterworld however, 5000 kilometres of ice separate the ocean floor from any possible smokers. On the other hand, a water-surface origin may still be possible.

Perhaps the only way to know if anything lives on a waterworld will be to study them with ESA’s habitable-planet-finding mission, Darwin. When it launches in around 2014, this flotilla of spacecraft will look for tell-tale signs of life in the atmospheres of any planets, including waterworlds.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaSC/SEMR96XO4HD_extreme_0.html

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>