Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the ’real’ waterworld

10.07.2003


Science fiction writers and movie-makers have imagined a world completely covered by an ocean, but what if one really existed? Would such a world support life, and what would this life be like?



ESA could make science fiction become science fact when it finds such a world, if the predictions of a group of European astronomers are correct. The ESA mission Eddington, which is now in development, could be the key.
At the recent ESA co-sponsored ’’Towards Other Earths’’ conference, nearly 250 of the world’s leading experts in planet detection discussed the strategy for finding Earth-like worlds. Alain Léger and colleagues of the Institut d’Astrophysique Spatiale, France, described a new class of planets that could be awaiting discovery: ’’waterworlds’’.

According to Léger and his colleagues, these waterworlds would contain about six times the mass of Earth, in a sphere twice as wide as our planet. They would possess atmospheres and orbit their parent star at roughly the same distance that the Earth is from the Sun. Most excitingly, an ocean of water entirely covers each world and extends over 25 times deeper than the average depth of the oceans on Earth.



A hundred kilometres deep

According to calculations, the internal structure of a waterworld would consist of a metallic core with a radius of about 4000 kilometres. Then there would be a rocky mantle region extending to a height of 3500 kilometres above the core’s surface, covered by a second mantle made of ice up to 5000 kilometres thick. Finally, an ocean blankets the entire world to a depth of 100 kilometres, with an atmosphere on top of this.

With twice the radius of the Earth, they will be easily spotted by the Eddington spacecraft, which is designed to detect planets down to half the size of the Earth. "A waterworld passing in front of a star, somewhat cooler than the Sun, will cause a dimming in the stellar light by almost one part in a thousand. That’s almost ten times larger than the smallest variation Eddington is designed to detect. So, waterworlds – if they exist – will be a very easy catch for Eddington," says Fabio Favata, ESA’s Eddington Project Scientist.

The CNES/ESA mission Corot, which is a smaller, precursor mission to Eddington due for launch around 2005, may also be just able to glimpse them, if they are close enough to their parent stars.

Origins of life

Scientists are now asking if such worlds could support life, and what would it be like, especially since water is a prime ingredient for life on Earth. While waterworlds seem to have everything to sustain life, there is a big question mark over whether they could actually allow it to start in the first place.

One of the leading theories for life’s origin in deep oceans is that it requires hot springs on the ocean floor, heated by volcanic activity like the ’’black smokers’’ found here on Earth. On a waterworld however, 5000 kilometres of ice separate the ocean floor from any possible smokers. On the other hand, a water-surface origin may still be possible.

Perhaps the only way to know if anything lives on a waterworld will be to study them with ESA’s habitable-planet-finding mission, Darwin. When it launches in around 2014, this flotilla of spacecraft will look for tell-tale signs of life in the atmospheres of any planets, including waterworlds.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaSC/SEMR96XO4HD_extreme_0.html

More articles from Earth Sciences:

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

A perfect sun-storm

28.09.2016 | Earth Sciences

New welding process joins dissimilar sheets better

28.09.2016 | Power and Electrical Engineering

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>