Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the ’real’ waterworld

10.07.2003


Science fiction writers and movie-makers have imagined a world completely covered by an ocean, but what if one really existed? Would such a world support life, and what would this life be like?



ESA could make science fiction become science fact when it finds such a world, if the predictions of a group of European astronomers are correct. The ESA mission Eddington, which is now in development, could be the key.
At the recent ESA co-sponsored ’’Towards Other Earths’’ conference, nearly 250 of the world’s leading experts in planet detection discussed the strategy for finding Earth-like worlds. Alain Léger and colleagues of the Institut d’Astrophysique Spatiale, France, described a new class of planets that could be awaiting discovery: ’’waterworlds’’.

According to Léger and his colleagues, these waterworlds would contain about six times the mass of Earth, in a sphere twice as wide as our planet. They would possess atmospheres and orbit their parent star at roughly the same distance that the Earth is from the Sun. Most excitingly, an ocean of water entirely covers each world and extends over 25 times deeper than the average depth of the oceans on Earth.



A hundred kilometres deep

According to calculations, the internal structure of a waterworld would consist of a metallic core with a radius of about 4000 kilometres. Then there would be a rocky mantle region extending to a height of 3500 kilometres above the core’s surface, covered by a second mantle made of ice up to 5000 kilometres thick. Finally, an ocean blankets the entire world to a depth of 100 kilometres, with an atmosphere on top of this.

With twice the radius of the Earth, they will be easily spotted by the Eddington spacecraft, which is designed to detect planets down to half the size of the Earth. "A waterworld passing in front of a star, somewhat cooler than the Sun, will cause a dimming in the stellar light by almost one part in a thousand. That’s almost ten times larger than the smallest variation Eddington is designed to detect. So, waterworlds – if they exist – will be a very easy catch for Eddington," says Fabio Favata, ESA’s Eddington Project Scientist.

The CNES/ESA mission Corot, which is a smaller, precursor mission to Eddington due for launch around 2005, may also be just able to glimpse them, if they are close enough to their parent stars.

Origins of life

Scientists are now asking if such worlds could support life, and what would it be like, especially since water is a prime ingredient for life on Earth. While waterworlds seem to have everything to sustain life, there is a big question mark over whether they could actually allow it to start in the first place.

One of the leading theories for life’s origin in deep oceans is that it requires hot springs on the ocean floor, heated by volcanic activity like the ’’black smokers’’ found here on Earth. On a waterworld however, 5000 kilometres of ice separate the ocean floor from any possible smokers. On the other hand, a water-surface origin may still be possible.

Perhaps the only way to know if anything lives on a waterworld will be to study them with ESA’s habitable-planet-finding mission, Darwin. When it launches in around 2014, this flotilla of spacecraft will look for tell-tale signs of life in the atmospheres of any planets, including waterworlds.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaSC/SEMR96XO4HD_extreme_0.html

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>