Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading climate scientists reaffirm view that late 20th Century warming was unusual

08.07.2003


Warming resulted in part fromfrom human activity



A group of leading climate scientists has reaffirmed the "robust consensus view" emerging from the peer reviewed literature that the warmth experienced on at least a hemispheric scale in the late 20th century was an anomaly in the previous millennium and that human activity likely played an important role in causing it. In so doing, they refuted recent claims that the warmth of recent decades was not unprecedented in the context of the past thousand years.

Writing in the 8 July issue of the American Geophysical Union publication Eos, Michael Mann of the University of Virginia and 12 colleagues in the United States and United Kingdom endorse the position on climate change and greenhouse gases taken by AGU in 1998. Specifically, they say that "there is a compelling basis for concern over future climate changes, including increases in global-mean surface temperatures, due to increased concentrations of greenhouse gases, primarily from fossil-fuel burning."


The Eos article is a response to two recent and nearly identical papers by Drs. Willie Soon and Sallie Baliunas of the Harvard-Smithsonian Center for Astrophysics, published in Climate Research and Energy & Environment (the latter paper with additional co-authors). These authors challenge the generally accepted view that natural factors cannot fully explain recent warming and must have been supplemented by significant human activity, and their papers have received attention in the media and in the U.S. Senate. Requests from reporters to top scientists in the field, seeking comment on the Soon and Baliunas position, lead to memoranda that were later expanded into the current Eos article, which was itself peer reviewed.

Paleoclimatologists (scientists who study ancient climates) generally rely on instrumental data for the past 150 years and "proxy" indicators, such as tree rings, ice cores, corals, and lake sediments to reconstruct the climate of earlier times. Most of the available data pertain to the northern hemisphere and show, according to the authors, that the warmth of the northern hemisphere over the past few decades is likely unprecedented in the last 1,000 years and quite possibly in the preceding 1,000 years as well.

Climate model simulations cannot explain the anomalous late 20th century warmth without taking into account the contributions of human activities, the authors say. They make three major points regarding Soon and Baliunas’s recent assertions challenging these findings.

First, in using proxy records to draw inferences about past climate, it is essential to assess their actual sensitivity to temperature variability. In particular, the authors say, Soon and Baliunas misuse proxy data reflective of changes in moisture or drought, rather than temperature, in their analysis.

Second, it is essential to distinguish between regional temperature anomalies and hemispheric mean temperature, which must represent an average of estimates over a sufficiently large number of distinct regions. For example, Mann and his co- authors say, the concepts of a "Little Ice Age" and "Medieval Warm Period" arose from the Eurocentric origins of historic climatology. The specific periods of coldness and warmth differed from region to region and as compared with data for the northern hemisphere as a whole.

Third, according to Mann and his colleagues, it is essential to define carefully the modern base period with which past climate is to be compared and to identify and quantify uncertainties. For example, they say, the most recent report of the Intergovernmental Panel on Climate Change (IPCC) carefully compares data for recent decades with reconstructions of past temperatures, taking into account the uncertainties in those reconstructions. IPCC concluded that late 20th century warmth in the northern hemisphere likely exceeded that of any time in the past millennium. The method used by Soon and Baliunas, they say, considers mean conditions for the entire 20th century as the base period and determines past temperatures from proxy evidence not capable of resolving trends on a decadal basis. It is therefore, they say, of limited value in determining whether recent warming in anomalous in a long term and large scale context.

The Eos article started as a memorandum that Michael Oppenheimer and Mann drafted to help inform colleagues who were being contacted by members of the media regarding the Soon and Baliunas papers and wanted an opinion from climate scientists and paleoclimatologists who were directly familiar with the underlying issues.

Mann and Oppenheimer learned that a number of other colleagues, including Tom Wigley of the University Corporation for Atmospheric Research (UCAR) in Boulder, Colorado; Philip Jones of the University of East Anglia’s Climatic Research Unit in Norwich, United Kingdom; and Raymond Bradley of the University of Massachusetts in Amherst were receiving similar media requests for their opinions on the matter. Their original memorandum evolved into a more general position paper jointly authored by a larger group of leading scientists in the field.

Mann says he sees the resulting Eos article as representing an even broader consensus of the viewpoint of the mainstream climate research community on the question of late 20th century warming and its causes. The goal of the authors, he says, is to reaffirm support for the AGU position statement on climate change and greenhouse gases and clarify what is currently known from the paleoclimate record of the past one-to-two thousand years and, in particular, what the bearing of this evidence is on the issue of the detection of human influence on recent climate change.

Harvey Leifert | AGU
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>