Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of sea salt to help climate modeling

04.07.2003


Study clarifies key chemical reaction in atmosphere

While a breeze over the ocean may cool beach goers in the summertime, a new scientific study has revealed that tiny sea salt particles drifting into the atmosphere participate in a chemical reaction that may have impacts on climate and acid rain.
The research, published in the July 3 online issue of Science Express, could have substantial implications for increasing the accuracy of climate models.


The study by scientists at the Department of Energy’s Pacific Northwest National Laboratory and the University of California, Irvine indicates that sea salt plays an important role – but one previously little understood -- in the chemistry of sulfur in the atmosphere. One form of sulfur – sulfur dioxide – is a byproduct of burning fossil fuels containing sulfur. It is also formed when naturally emitted sulfur-containing compounds react in the atmosphere. In the air, sulfur dioxide is converted to sulfuric acid, a major component of acid rain and a contributor to haze in the atmosphere. These haze particles can affect clouds, which play an important role in climate.

For years climate experts have struggled to capture the effects of sulfur chemistry in climate models. The PNNL-UCI study provides a new understanding of sea salt’s role in atmospheric chemistry that will allow scientists to better predict and capture that information in models used to predict climate change.

"Our studies indicate that sea salt particles will absorb more sulfur dioxide and convert it to sulfuric acid more rapidly than previously thought," said Barbara Finlayson-Pitts, a professor of chemistry at UC-Irvine and a foremost expert on atmospheric chemistry who participated in the study while on sabbatical at PNNL. "The chemistry discovered in these experiments is not currently included in models of sulfuric acid formation in air, but could help to resolve discrepancies between model predictions and measurements of sulfur dioxide and sulfuric acid, which is essential for understanding the role of these compounds in acid deposition and global climate."

The importance of sea salt shouldn’t be underestimated, said Alexander Laskin, first author of the Science Express paper and senior research scientist at PNNL. With nearly three-quarters of the earth’s surface covered by water, a considerable number of sea salt particles enter the lower atmosphere and, given their minute size, can be carried long distances.

In the lab, the team of scientists simulated an ocean spray in which wind carries tiny sea salt particles into the atmosphere. They then exposed the salt particles to three important elements found in the atmosphere -- ozone, water vapor and light. The reaction caused the salt particles to change from neutral to a base.

"Climate modelers have assumed that the sea salt particles rapidly become acidic in the atmosphere and therefore their climate impact was underestimated," Laskin said. "We now know that under certain conditions they remain basic during the day and therefore their role must be reconsidered."

The team went on to theorize that when the sea salt particle is a base, it would be able to absorb substantial amounts of sulfur dioxide, and convert it to sulfuric acid in the particles.

"We’re providing a new fundamental understanding of atmospheric chemistry that allows climate models to more accurately consider the role of sea salt in climate change," he said. "The basic chemistry is crucial to understand if we want to accurately predict warming on a regional or global scale."

In the experiments, the team used table salt rather than sea salt because it accounts for 90 percent of the compounds found in sea salt. They utilized a computer-controlled scanning electron microscope and time-of-flight secondary ion mass spectrometer housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a scientific user facility located at PNNL. Equipment in EMSL (www.emsl.pnl.gov) is available to outside users on a competitive proposal basis.


This research was funded by the Department of Energy’s Office of Biological and Environmental Research and by the National Science Foundation. Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science facility that is gaining new knowledge through fundamental research and providing science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL for the federal government since its inception in 1965.


Staci Maloof | EurekAlert!
Further information:
http://www.pnl.gov/news/index.html
http://www.eurekalert.org/pub_releases/2003-07/www.emsl.pnl.gov

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>