Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charting seismic effects on water levels can refine earthquake understanding

27.06.2003


Through many decades, stories about earthquakes raising or lowering water levels in wells, lakes and streams have become the stuff of folklore.

Just last November, the magnitude 7.9 Denali earthquake in Alaska was credited with sloshing water in Seattle’s Lake Union and Lake Pontchartrain in New Orleans, and was blamed the next day when muddy tap water turned up in Pennsylvania, where some water tables dropped as much as 6 inches.

But the relationship between seismic activity and hydrology is not well understood and is ripe for serious examination by scientists from the two disciplines, said David Montgomery, a University of Washington professor of Earth and space sciences.



He and Michael Manga, associate professor of Earth and planetary science at the University of California, Berkeley, reviewed evidence of changes in stream flow and water levels in wells following earthquakes dating as far back as 1906, when a quake estimated at magnitude 7.7 to 7.9 struck San Francisco. Montgomery is an expert in surface hydrology and Manga is an expert in subsurface and aquifer hydrology.

The scientists found that, generally, an earthquake’s effects on water depend on the distance from the epicenter, the magnitude and the geologic conditions at the location where changes to a well or stream are noted. They also found that effects on wells and aquifers were likely to be recorded at substantially greater distances from an earthquake’s epicenter than are changes to stream flow.

"Put the two together and what it says is that the stream-flow response is a completely different beast than the water-well response," said Montgomery, lead author of a paper documenting the findings that is being published in the June 27 edition of the journal Science.

Montgomery said the new analysis provides a framework for understanding the broad range of earthquakes’ effects on hydrology, and should help guide the study of links between seismology and hydrology.

Montgomery and Manga found that a mild earthquake, around magnitude 3, could generate effects on subsurface water, such as in wells, as far as about 10 miles from the epicenter. But effects on well water from a magnitude 9 quake could be observed more than 6,000 miles away. In fact, the latter scenario played out in the 1964 Alaska earthquake that registered 9.2.

"Wells in South Africa, clear on the other side of the world, responded," Montgomery said. "They didn’t respond much, mind you, but the observations corresponded with the Alaska earthquake."

In examining changes in surface water related to seismic activity, the scientists found that the maximum distance from the epicenter at which effects were noted corresponded closely with theories about the maximum distance from the epicenter that liquefaction could be expected in an earthquake of the same magnitude. In addition, those maximum distances were far less than for subsurface water. For example, a magnitude 9 quake produced surface water changes only as far as about 750 miles from the epicenter. Montgomery noted that stream flow changes could be detected at much greater distances if they were, in fact, occurring that far away from the epicenter.

When an earthquake occurs, well-water levels can change as energy from the quake compresses the rock containing the water, thus forcing water out of its pores. Similarly, the flow of streams on the surface can increase as the aquifer is compressed, or either liquefies or settles during strong shaking, and water rises to the surface, Montgomery said.

"It’s like squeezing a sponge because you’re reducing the pore space and the water comes out. It has to go somewhere," he said.

Changes to surface and subsurface water could be related to each other at very close distances from the epicenter, Montgomery said, but even then different processes control them. That becomes more evident by the way they react at greater distances.

"One gives us a window on connections between hydrology, seismology and deformation of the Earth’s crust," he said, "and the other gives us a better picture of connections between hydrology, seismology and geology at the surface."



For more information, contact Montgomery at 206-685-2560 or dave@ess.washington.edu; or Manga at 510-643-8532 or manga@seismo.berkeley.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>