Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charting seismic effects on water levels can refine earthquake understanding

27.06.2003


Through many decades, stories about earthquakes raising or lowering water levels in wells, lakes and streams have become the stuff of folklore.

Just last November, the magnitude 7.9 Denali earthquake in Alaska was credited with sloshing water in Seattle’s Lake Union and Lake Pontchartrain in New Orleans, and was blamed the next day when muddy tap water turned up in Pennsylvania, where some water tables dropped as much as 6 inches.

But the relationship between seismic activity and hydrology is not well understood and is ripe for serious examination by scientists from the two disciplines, said David Montgomery, a University of Washington professor of Earth and space sciences.



He and Michael Manga, associate professor of Earth and planetary science at the University of California, Berkeley, reviewed evidence of changes in stream flow and water levels in wells following earthquakes dating as far back as 1906, when a quake estimated at magnitude 7.7 to 7.9 struck San Francisco. Montgomery is an expert in surface hydrology and Manga is an expert in subsurface and aquifer hydrology.

The scientists found that, generally, an earthquake’s effects on water depend on the distance from the epicenter, the magnitude and the geologic conditions at the location where changes to a well or stream are noted. They also found that effects on wells and aquifers were likely to be recorded at substantially greater distances from an earthquake’s epicenter than are changes to stream flow.

"Put the two together and what it says is that the stream-flow response is a completely different beast than the water-well response," said Montgomery, lead author of a paper documenting the findings that is being published in the June 27 edition of the journal Science.

Montgomery said the new analysis provides a framework for understanding the broad range of earthquakes’ effects on hydrology, and should help guide the study of links between seismology and hydrology.

Montgomery and Manga found that a mild earthquake, around magnitude 3, could generate effects on subsurface water, such as in wells, as far as about 10 miles from the epicenter. But effects on well water from a magnitude 9 quake could be observed more than 6,000 miles away. In fact, the latter scenario played out in the 1964 Alaska earthquake that registered 9.2.

"Wells in South Africa, clear on the other side of the world, responded," Montgomery said. "They didn’t respond much, mind you, but the observations corresponded with the Alaska earthquake."

In examining changes in surface water related to seismic activity, the scientists found that the maximum distance from the epicenter at which effects were noted corresponded closely with theories about the maximum distance from the epicenter that liquefaction could be expected in an earthquake of the same magnitude. In addition, those maximum distances were far less than for subsurface water. For example, a magnitude 9 quake produced surface water changes only as far as about 750 miles from the epicenter. Montgomery noted that stream flow changes could be detected at much greater distances if they were, in fact, occurring that far away from the epicenter.

When an earthquake occurs, well-water levels can change as energy from the quake compresses the rock containing the water, thus forcing water out of its pores. Similarly, the flow of streams on the surface can increase as the aquifer is compressed, or either liquefies or settles during strong shaking, and water rises to the surface, Montgomery said.

"It’s like squeezing a sponge because you’re reducing the pore space and the water comes out. It has to go somewhere," he said.

Changes to surface and subsurface water could be related to each other at very close distances from the epicenter, Montgomery said, but even then different processes control them. That becomes more evident by the way they react at greater distances.

"One gives us a window on connections between hydrology, seismology and deformation of the Earth’s crust," he said, "and the other gives us a better picture of connections between hydrology, seismology and geology at the surface."



For more information, contact Montgomery at 206-685-2560 or dave@ess.washington.edu; or Manga at 510-643-8532 or manga@seismo.berkeley.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>