Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charting seismic effects on water levels can refine earthquake understanding

27.06.2003


Through many decades, stories about earthquakes raising or lowering water levels in wells, lakes and streams have become the stuff of folklore.

Just last November, the magnitude 7.9 Denali earthquake in Alaska was credited with sloshing water in Seattle’s Lake Union and Lake Pontchartrain in New Orleans, and was blamed the next day when muddy tap water turned up in Pennsylvania, where some water tables dropped as much as 6 inches.

But the relationship between seismic activity and hydrology is not well understood and is ripe for serious examination by scientists from the two disciplines, said David Montgomery, a University of Washington professor of Earth and space sciences.



He and Michael Manga, associate professor of Earth and planetary science at the University of California, Berkeley, reviewed evidence of changes in stream flow and water levels in wells following earthquakes dating as far back as 1906, when a quake estimated at magnitude 7.7 to 7.9 struck San Francisco. Montgomery is an expert in surface hydrology and Manga is an expert in subsurface and aquifer hydrology.

The scientists found that, generally, an earthquake’s effects on water depend on the distance from the epicenter, the magnitude and the geologic conditions at the location where changes to a well or stream are noted. They also found that effects on wells and aquifers were likely to be recorded at substantially greater distances from an earthquake’s epicenter than are changes to stream flow.

"Put the two together and what it says is that the stream-flow response is a completely different beast than the water-well response," said Montgomery, lead author of a paper documenting the findings that is being published in the June 27 edition of the journal Science.

Montgomery said the new analysis provides a framework for understanding the broad range of earthquakes’ effects on hydrology, and should help guide the study of links between seismology and hydrology.

Montgomery and Manga found that a mild earthquake, around magnitude 3, could generate effects on subsurface water, such as in wells, as far as about 10 miles from the epicenter. But effects on well water from a magnitude 9 quake could be observed more than 6,000 miles away. In fact, the latter scenario played out in the 1964 Alaska earthquake that registered 9.2.

"Wells in South Africa, clear on the other side of the world, responded," Montgomery said. "They didn’t respond much, mind you, but the observations corresponded with the Alaska earthquake."

In examining changes in surface water related to seismic activity, the scientists found that the maximum distance from the epicenter at which effects were noted corresponded closely with theories about the maximum distance from the epicenter that liquefaction could be expected in an earthquake of the same magnitude. In addition, those maximum distances were far less than for subsurface water. For example, a magnitude 9 quake produced surface water changes only as far as about 750 miles from the epicenter. Montgomery noted that stream flow changes could be detected at much greater distances if they were, in fact, occurring that far away from the epicenter.

When an earthquake occurs, well-water levels can change as energy from the quake compresses the rock containing the water, thus forcing water out of its pores. Similarly, the flow of streams on the surface can increase as the aquifer is compressed, or either liquefies or settles during strong shaking, and water rises to the surface, Montgomery said.

"It’s like squeezing a sponge because you’re reducing the pore space and the water comes out. It has to go somewhere," he said.

Changes to surface and subsurface water could be related to each other at very close distances from the epicenter, Montgomery said, but even then different processes control them. That becomes more evident by the way they react at greater distances.

"One gives us a window on connections between hydrology, seismology and deformation of the Earth’s crust," he said, "and the other gives us a better picture of connections between hydrology, seismology and geology at the surface."



For more information, contact Montgomery at 206-685-2560 or dave@ess.washington.edu; or Manga at 510-643-8532 or manga@seismo.berkeley.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>