Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internal waves appear to have the muscle to pump up mid-lats

25.06.2003


When internal waves up to 300 feet first form they cause a mighty churning of ocean waters – something invisible to and unfelt by anyone at the surface.


Maps, the first of their kind, show energy of internal waves carried away from where they originated. The larger and longer the arrows (vectors) the more energy is being carried away from where the waves originated. The upper map shows that, in general, internal waves generated by storms move through the ocean depths toward the mid-latitudes. The lower maps shows energy moving directly away from places where tidal forces have created internal waves.Graphic credit required: University of Washington/Nature



Now in a novel use of mooring data, some of it three decades old, a University of Washington researcher has calculated just how much punch these waves appear to carry as they travel, or propagate, thousands of miles from where they originate.

It’s energy that appears to be crucial to the conveyor-belt-like circulation wherein millions of cubic meters of icy-cold water sink each second at high latitudes and are driven to upwell at lower latitudes. Without such upwelling, global ocean circulation would stall, causing the entire ocean to fill with cold water. Further, nutrients that have drifted down to the ocean depths would remain in the deep instead of being carried back to surface waters for use by plankton, the tiny plants and animals on which all other marine life depend and which greatly affect how much carbon dioxide is absorbed and released by the oceans.


Internal waves are just like waves one sees breaking on beaches except they occur completely below the surface. For the most energetic such waves, which get started either during stormy weather or when tides pull water across especially rough places on the seafloor, up to 50 percent of their original energy can be carried far away as the waves undulate through the ocean depths, according to Matthew Alford, an oceanographer with the University of Washington’s Applied Physics Laboratory.

That’s important because climate modelers need to know all the key factors that affect ocean mixing that occurs at mid-latitudes. Previous measurements and calculations by Alford, and by National Aeronautics and Space Administration and Oregon State University scientists, show that internal waves have the 2 trillion watts that would account for such ocean mixing.

Alford provides the first glimpse of how much of that energy actually makes it very far from where the waves originate.

"The fluxes . . . are large enough to transport, across ocean basins, globally significant amounts of energy available for mixing," Alford wrote in the journal Nature last month. "Global mapping of their fluxes is an important step in determining how and where internal-wave mixing is accomplished."

Alford, an Office of Naval Research Young Investigator, combed historical data from more than 1,000 moorings – some used for projects as far back as 1973. Sixty had instruments at the right depths and collected data for long enough, at least a winter, for Alford’s purposes. Moorings provide fair coverage of ocean waters in the North Atlantic and Pacific but very poor coverage in low latitudes in the Southern Hemisphere, he says, something that could be considerably improved by deploying several well-placed moorings in the future.

He found that the kind of internal waves caused by tidal forces pulling water across underwater ridges, shoals, channels and other rough places on the seafloor, for example around the Hawaiian Islands, carry 30 percent to 50 percent of their energy directly away from their sources, a process that goes on year-round.

A second type of internal waves, one caused by sudden wind events and storms, appear to carry at least 15 percent to 20 percent of the energy input from where they originate, mainly during the stormy months of winter, and that energy is usually directed toward mid-latitudes areas. Alford says the focus in recent years has been on the importance of internal waves generated by internal tides, whereas his work suggests that internal waves generated by winds are just as significant.


###
For more information: Alford, 206-221-3257, malford@apl.washington.edu

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>