Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Internal waves appear to have the muscle to pump up mid-lats


When internal waves up to 300 feet first form they cause a mighty churning of ocean waters – something invisible to and unfelt by anyone at the surface.

Maps, the first of their kind, show energy of internal waves carried away from where they originated. The larger and longer the arrows (vectors) the more energy is being carried away from where the waves originated. The upper map shows that, in general, internal waves generated by storms move through the ocean depths toward the mid-latitudes. The lower maps shows energy moving directly away from places where tidal forces have created internal waves.Graphic credit required: University of Washington/Nature

Now in a novel use of mooring data, some of it three decades old, a University of Washington researcher has calculated just how much punch these waves appear to carry as they travel, or propagate, thousands of miles from where they originate.

It’s energy that appears to be crucial to the conveyor-belt-like circulation wherein millions of cubic meters of icy-cold water sink each second at high latitudes and are driven to upwell at lower latitudes. Without such upwelling, global ocean circulation would stall, causing the entire ocean to fill with cold water. Further, nutrients that have drifted down to the ocean depths would remain in the deep instead of being carried back to surface waters for use by plankton, the tiny plants and animals on which all other marine life depend and which greatly affect how much carbon dioxide is absorbed and released by the oceans.

Internal waves are just like waves one sees breaking on beaches except they occur completely below the surface. For the most energetic such waves, which get started either during stormy weather or when tides pull water across especially rough places on the seafloor, up to 50 percent of their original energy can be carried far away as the waves undulate through the ocean depths, according to Matthew Alford, an oceanographer with the University of Washington’s Applied Physics Laboratory.

That’s important because climate modelers need to know all the key factors that affect ocean mixing that occurs at mid-latitudes. Previous measurements and calculations by Alford, and by National Aeronautics and Space Administration and Oregon State University scientists, show that internal waves have the 2 trillion watts that would account for such ocean mixing.

Alford provides the first glimpse of how much of that energy actually makes it very far from where the waves originate.

"The fluxes . . . are large enough to transport, across ocean basins, globally significant amounts of energy available for mixing," Alford wrote in the journal Nature last month. "Global mapping of their fluxes is an important step in determining how and where internal-wave mixing is accomplished."

Alford, an Office of Naval Research Young Investigator, combed historical data from more than 1,000 moorings – some used for projects as far back as 1973. Sixty had instruments at the right depths and collected data for long enough, at least a winter, for Alford’s purposes. Moorings provide fair coverage of ocean waters in the North Atlantic and Pacific but very poor coverage in low latitudes in the Southern Hemisphere, he says, something that could be considerably improved by deploying several well-placed moorings in the future.

He found that the kind of internal waves caused by tidal forces pulling water across underwater ridges, shoals, channels and other rough places on the seafloor, for example around the Hawaiian Islands, carry 30 percent to 50 percent of their energy directly away from their sources, a process that goes on year-round.

A second type of internal waves, one caused by sudden wind events and storms, appear to carry at least 15 percent to 20 percent of the energy input from where they originate, mainly during the stormy months of winter, and that energy is usually directed toward mid-latitudes areas. Alford says the focus in recent years has been on the importance of internal waves generated by internal tides, whereas his work suggests that internal waves generated by winds are just as significant.

For more information: Alford, 206-221-3257,

Sandra Hines | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>