Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internal waves appear to have the muscle to pump up mid-lats

25.06.2003


When internal waves up to 300 feet first form they cause a mighty churning of ocean waters – something invisible to and unfelt by anyone at the surface.


Maps, the first of their kind, show energy of internal waves carried away from where they originated. The larger and longer the arrows (vectors) the more energy is being carried away from where the waves originated. The upper map shows that, in general, internal waves generated by storms move through the ocean depths toward the mid-latitudes. The lower maps shows energy moving directly away from places where tidal forces have created internal waves.Graphic credit required: University of Washington/Nature



Now in a novel use of mooring data, some of it three decades old, a University of Washington researcher has calculated just how much punch these waves appear to carry as they travel, or propagate, thousands of miles from where they originate.

It’s energy that appears to be crucial to the conveyor-belt-like circulation wherein millions of cubic meters of icy-cold water sink each second at high latitudes and are driven to upwell at lower latitudes. Without such upwelling, global ocean circulation would stall, causing the entire ocean to fill with cold water. Further, nutrients that have drifted down to the ocean depths would remain in the deep instead of being carried back to surface waters for use by plankton, the tiny plants and animals on which all other marine life depend and which greatly affect how much carbon dioxide is absorbed and released by the oceans.


Internal waves are just like waves one sees breaking on beaches except they occur completely below the surface. For the most energetic such waves, which get started either during stormy weather or when tides pull water across especially rough places on the seafloor, up to 50 percent of their original energy can be carried far away as the waves undulate through the ocean depths, according to Matthew Alford, an oceanographer with the University of Washington’s Applied Physics Laboratory.

That’s important because climate modelers need to know all the key factors that affect ocean mixing that occurs at mid-latitudes. Previous measurements and calculations by Alford, and by National Aeronautics and Space Administration and Oregon State University scientists, show that internal waves have the 2 trillion watts that would account for such ocean mixing.

Alford provides the first glimpse of how much of that energy actually makes it very far from where the waves originate.

"The fluxes . . . are large enough to transport, across ocean basins, globally significant amounts of energy available for mixing," Alford wrote in the journal Nature last month. "Global mapping of their fluxes is an important step in determining how and where internal-wave mixing is accomplished."

Alford, an Office of Naval Research Young Investigator, combed historical data from more than 1,000 moorings – some used for projects as far back as 1973. Sixty had instruments at the right depths and collected data for long enough, at least a winter, for Alford’s purposes. Moorings provide fair coverage of ocean waters in the North Atlantic and Pacific but very poor coverage in low latitudes in the Southern Hemisphere, he says, something that could be considerably improved by deploying several well-placed moorings in the future.

He found that the kind of internal waves caused by tidal forces pulling water across underwater ridges, shoals, channels and other rough places on the seafloor, for example around the Hawaiian Islands, carry 30 percent to 50 percent of their energy directly away from their sources, a process that goes on year-round.

A second type of internal waves, one caused by sudden wind events and storms, appear to carry at least 15 percent to 20 percent of the energy input from where they originate, mainly during the stormy months of winter, and that energy is usually directed toward mid-latitudes areas. Alford says the focus in recent years has been on the importance of internal waves generated by internal tides, whereas his work suggests that internal waves generated by winds are just as significant.


###
For more information: Alford, 206-221-3257, malford@apl.washington.edu

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>