Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Space Shuttle Exhaust Creates Night-Shining Clouds

04.06.2003


Exhaust from the main engines of NASA’s space shuttle, which is about 97 percent water vapor, can travel to the Arctic in the Earth’s thermosphere where it forms ice to create some of the Earth’s highest clouds that literally shine at night, according to a new study led by the Naval Research Laboratory and jointly funded by NASA and the Office of Naval Research.


This image shows the launch of space shuttle STS-85 on August 7, 1997. The orange external tank contains over 700 metric tons of liquid hydrogen and liquid oxygen. The main effluent is water. The Stevens et al. results show evidence that this water was transported to the Arctic where it formed a vast region of polar mesospheric clouds covering an area about 10% of North America. Credit: NASA


Because of their high altitude, near the edge of space, noctilucent clouds shine at night when the Sun’s rays hit them from below while the lower atmosphere is bathed in darkness. They typically form in the cold, summer polar mesosphere and are made of water ice crystals. Credit: Naval Research Laboratory, Washington, D.C.



The thermosphere is the highest layer in our atmosphere, occupying the region above about 55 miles (88 kilometers) altitude. The clouds settle to 51 miles (82 km) altitude in the layer directly below called the mesosphere. The stratosphere and the troposphere lie in that order below the mesosphere.

Dr. Michael H. Stevens, the paper’s lead author and a research physicist at the Naval Research Laboratory in Washington, reports that exhaust from the shuttle and other launch vehicles may help explain how some of these mysterious clouds are formed. The paper appeared on Saturday (May 31) in Geophysical Research Letters.


Noctilucent clouds, sometimes called polar mesospheric clouds when observed from space, are too thin to be seen by the naked eye in broad daylight. However, they shine at night when the Sun’s rays hit them from below the horizon while the lower atmosphere is bathed in darkness. They typically form in the cold, summer polar mesosphere and are made of water ice particles.

The study uses data from the Naval Research Laboratory’s Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) instrument, launched on the shuttle for eight days of observation in August, 1997. MAHRSI allowed scientists to follow the plume’s rapid pole-ward transport and then to observe a discrete region of ice clouds as it appeared in the Arctic near the end of the mission. Stevens and colleagues find that the water contained in these clouds is consistent with the amount injected into the thermosphere by the shuttle on its ascent off the east coast of the United States.

“This study is important because it shows that there is a new source of water ice for the polar upper atmosphere,” said Stevens, lead scientist for MAHRSI. “Our results indicate that the water vapor released by launch vehicles can end up in the Arctic mesosphere.”

About half of the water vapor exhaust from the shuttle’s main fuel tank is injected into the thermosphere, typically at altitudes of 64 to 71 miles (103 to 114 km). Stevens and colleagues found that this water vapor can then be transported all the way to the Arctic in a little over a day, much faster than predicted by models of atmospheric winds. There is currently no explanation for why the water moves so quickly.

Stevens and colleagues also include observations from a ground-based experiment in Norway measuring water vapor moving toward the Arctic Circle. These observations reveal the passage of a large plume of water vapor overhead a little over a day after the same (STS-85) shuttle launch, confirming the plume trajectory inferred from the MAHRSI measurements.

As the water vapor moves to the Arctic it falls from the warmer thermosphere down to colder areas in the mesosphere. Over the North Pole in the summer mesospheric temperatures can plummet below minus 220 Fahrenheit (minus 140 Celsius), the lowest found in the Earth’s atmosphere. At these temperatures, water vapor condenses into ice particles and clouds form.

“The amount of water found here is tiny compared to the amount in the lower atmosphere,” Stevens said. “But the long term effects in the upper atmosphere have yet to be studied.”

The Office of Naval Research and NASA’s Office of Space Science funded the study.

Krishna Ramanujan | NASA Goddard Space Flight Center
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0522shuttleshine.html

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>