Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal Cities Turn Up the Heat on Rainfall

28.05.2003

The old song, asking rain to "go away" and "come again another day," may get even older for people who live in large coastal cities, according to new NASA-funded research.

According to the study, urban heat islands, created from pavement and buildings in big coastal cities like Houston, cause warm air to rise and interact with sea breezes to create heavier and more frequent rainfall in and downwind of the cities. Analysis of Houston-area rain-gauge data, both prior to and since urbanization, also suggests there have been observed increases in rainfall as more heat islands were created.

The Houston-area study used data from the world’s only space-based rain radar on NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite, and dense clusters of rain gauges.

Authors, J. Marshall Shepherd of NASA’s Goddard Space Flight Center, Greenbelt, Md., and Steve Burian, a University of Arkansas, Fayetteville, Ark. researcher, believe the impact large coastal cities have on weather, and possibly climate, will become increasingly important as more people move into urban areas, with even greater concentrations in coastal zones. The paper is in the current American Meteorological Society and American Geophysical Union’s journal, Earth Interactions.

A recent United Nations report estimates 60 percent of Earth’s population will live in cities by 2025. Previous related studies have shown urban heat islands create heavier rainfall in and downwind of cities like Atlanta, St. Louis and Chicago. However, this is one of the first studies to provide evidence of such an effect around a U.S. coastal city. It is also the first to incorporate specific satellite-derived rainfall data for a coastal urban area.

Urban areas with high concentrations of buildings, roads and other artificial surfaces retain heat, which leads to warmer surrounding temperatures and creates heat islands. Rising warm air, promoted by the increased heat, may help produce clouds that result in more rainfall around cities. Buildings of different heights cause winds to converge, driving them upward, helping form clouds. The study shows the urban heat island/rain effect may be even more pronounced near coasts. In coastal cities like Houston, sea breezes also create rising air and clouds. The combination of urban converging winds and coastal sea breezes may enhance thunderstorm development.

"Recent publications have shown evidence of increased lightning activity over and downwind of Houston," Shepherd said. "Since lightning and rainfall are so closely related, we decided to use TRMM’s Precipitation Radar, and a network of rain gauges, to see if urban-induced abnormal rainfall existed," he said.

Using data from 1998 to 2002, the researchers found mean rainfall rates, during the warm season, were 44 percent greater downwind of Houston than upwind, even though the regions share the same climate. They also found rainfall rates were 29 percent greater over the city than upwind. Rainfall rates indicate how hard it rains and can be an indicator of enhanced thunderstorm activity.

To rule out any effects from the coastline curvature near Houston on thunderstorm development, the researchers divided the entire Texas coast into seven zones extending 100 kilometers (62 miles) inland and including four or five major inlets or bays. Analysis of rainfall data in these zones showed abnormal rainfall only occurred over and downwind of Houston, which suggested effects from the urban landscape were significant. At the coastlines, TRMM satellite data were important, because they allowed researchers to assess rainfall data in areas where there were no gauges and records, like over the ocean.

A companion paper by the researchers, presented in March at a Geological Society of America meeting in Kansas City, Mo., stated urban areas also affect the timing of rainfall. Compared to upwind areas, there were nearly two times as many occurrences of rainfall from noon to midnight in the urban area. This finding has significant implications for flood control in Houston, Burian said.

NASA’s Earth Science Enterprise, which supported this study, is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0523urbanrainfall.html
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>