Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal Cities Turn Up the Heat on Rainfall

28.05.2003

The old song, asking rain to "go away" and "come again another day," may get even older for people who live in large coastal cities, according to new NASA-funded research.

According to the study, urban heat islands, created from pavement and buildings in big coastal cities like Houston, cause warm air to rise and interact with sea breezes to create heavier and more frequent rainfall in and downwind of the cities. Analysis of Houston-area rain-gauge data, both prior to and since urbanization, also suggests there have been observed increases in rainfall as more heat islands were created.

The Houston-area study used data from the world’s only space-based rain radar on NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite, and dense clusters of rain gauges.

Authors, J. Marshall Shepherd of NASA’s Goddard Space Flight Center, Greenbelt, Md., and Steve Burian, a University of Arkansas, Fayetteville, Ark. researcher, believe the impact large coastal cities have on weather, and possibly climate, will become increasingly important as more people move into urban areas, with even greater concentrations in coastal zones. The paper is in the current American Meteorological Society and American Geophysical Union’s journal, Earth Interactions.

A recent United Nations report estimates 60 percent of Earth’s population will live in cities by 2025. Previous related studies have shown urban heat islands create heavier rainfall in and downwind of cities like Atlanta, St. Louis and Chicago. However, this is one of the first studies to provide evidence of such an effect around a U.S. coastal city. It is also the first to incorporate specific satellite-derived rainfall data for a coastal urban area.

Urban areas with high concentrations of buildings, roads and other artificial surfaces retain heat, which leads to warmer surrounding temperatures and creates heat islands. Rising warm air, promoted by the increased heat, may help produce clouds that result in more rainfall around cities. Buildings of different heights cause winds to converge, driving them upward, helping form clouds. The study shows the urban heat island/rain effect may be even more pronounced near coasts. In coastal cities like Houston, sea breezes also create rising air and clouds. The combination of urban converging winds and coastal sea breezes may enhance thunderstorm development.

"Recent publications have shown evidence of increased lightning activity over and downwind of Houston," Shepherd said. "Since lightning and rainfall are so closely related, we decided to use TRMM’s Precipitation Radar, and a network of rain gauges, to see if urban-induced abnormal rainfall existed," he said.

Using data from 1998 to 2002, the researchers found mean rainfall rates, during the warm season, were 44 percent greater downwind of Houston than upwind, even though the regions share the same climate. They also found rainfall rates were 29 percent greater over the city than upwind. Rainfall rates indicate how hard it rains and can be an indicator of enhanced thunderstorm activity.

To rule out any effects from the coastline curvature near Houston on thunderstorm development, the researchers divided the entire Texas coast into seven zones extending 100 kilometers (62 miles) inland and including four or five major inlets or bays. Analysis of rainfall data in these zones showed abnormal rainfall only occurred over and downwind of Houston, which suggested effects from the urban landscape were significant. At the coastlines, TRMM satellite data were important, because they allowed researchers to assess rainfall data in areas where there were no gauges and records, like over the ocean.

A companion paper by the researchers, presented in March at a Geological Society of America meeting in Kansas City, Mo., stated urban areas also affect the timing of rainfall. Compared to upwind areas, there were nearly two times as many occurrences of rainfall from noon to midnight in the urban area. This finding has significant implications for flood control in Houston, Burian said.

NASA’s Earth Science Enterprise, which supported this study, is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0523urbanrainfall.html
http://www.gsfc.nasa.gov/

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>