Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Helps Scientists Home In On Tropical Climate Controls

22.05.2003


It has long been known that tropical climate - by redistributing vast amounts of solar energy through welling hot air and the formation of towering cumulous clouds - influences weather in other parts of the world.

It remains unclear, however, how much the tropics can be affected by higher latitudes.
Now, with the help of a sophisticated computer model, scientists at the University of Wisconsin-Madison have shown that vast atmospheric "bridges" and oceanic "tunnels," created by overturning air and water, link the high latitudes to the tropics and can warm ocean temperature near the equator.


The finding, reported in the May 13 issue of the journal Geophysical Research Letters, has implications for better understanding global and regional climate change, and is the first to identify high-latitude phenomena that significantly influence climate in the equatorial regions of the world.

The prevailing wisdom, according to Zhengyu Liu, lead author of the paper and director of UW-Madison’s Center for Climatic Research, was that climate and weather phenomena at higher latitudes tended to be static, with no far-reaching influence.

"That was the conventional thinking," he says. "But our model shows that these phenomena are equally weighted, that climate and weather at higher latitudes have as much of an influence on the tropics as tropical weather and climate influence the higher latitudes. Both are very important."

The discovery reveals a hidden climate mechanism that may be of critical importance to studies of past and future global and regional climate change, says Liu.

According to the scenario depicted by the modeling experiments conducted by Liu and colleague Haijun Yang, the heat carried via the atmospheric bridges from the tropics to higher latitudes is reduced as a result of warming climate in the higher latitudes. At the same time, warm extratropical water is funneled into the subsurface oceanic tunnels and is carried to the equator where it upwells and warms the tropical ocean.

The study suggests that even a 2-degree Celsius warming of the ocean in regions beyond the tropics can raise ocean surface and subsurface temperatures in the tropics by as much as 1 degree Celsius as less warm air flows out of the tropics and warm, extratropical water is channeled toward the equator by the oceanic tunnels depicted in the study.

"That is a significant change" in temperature, says Liu. "It is fundamentally important."

The new study, says Liu, provides a missing piece of the climate puzzle. It will enable scientists to gain more insight into climate and climate change as an unknown mechanism is revealed and added to the mix of variables that researchers must grasp as they wrestle with the hugely complex problem of understanding and forecasting climate change.

"The magnitude of this influence and the relative contributions of the atmospheric bridge and oceanic tunnel have remained uncertain," Liu says. "But we have found that the extratropics exert a strong control on tropical climate. This is our first estimate of the extratropical influence on the tropics."

The Center for Climatic Research at the University of Wisconsin-Madison is a leading center of research into world climate. It is a part of the UW-Madison Gaylord Nelson Institute for Environmental Studies.

Terry Devitt | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8687

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>