Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Helps Scientists Home In On Tropical Climate Controls

22.05.2003


It has long been known that tropical climate - by redistributing vast amounts of solar energy through welling hot air and the formation of towering cumulous clouds - influences weather in other parts of the world.

It remains unclear, however, how much the tropics can be affected by higher latitudes.
Now, with the help of a sophisticated computer model, scientists at the University of Wisconsin-Madison have shown that vast atmospheric "bridges" and oceanic "tunnels," created by overturning air and water, link the high latitudes to the tropics and can warm ocean temperature near the equator.


The finding, reported in the May 13 issue of the journal Geophysical Research Letters, has implications for better understanding global and regional climate change, and is the first to identify high-latitude phenomena that significantly influence climate in the equatorial regions of the world.

The prevailing wisdom, according to Zhengyu Liu, lead author of the paper and director of UW-Madison’s Center for Climatic Research, was that climate and weather phenomena at higher latitudes tended to be static, with no far-reaching influence.

"That was the conventional thinking," he says. "But our model shows that these phenomena are equally weighted, that climate and weather at higher latitudes have as much of an influence on the tropics as tropical weather and climate influence the higher latitudes. Both are very important."

The discovery reveals a hidden climate mechanism that may be of critical importance to studies of past and future global and regional climate change, says Liu.

According to the scenario depicted by the modeling experiments conducted by Liu and colleague Haijun Yang, the heat carried via the atmospheric bridges from the tropics to higher latitudes is reduced as a result of warming climate in the higher latitudes. At the same time, warm extratropical water is funneled into the subsurface oceanic tunnels and is carried to the equator where it upwells and warms the tropical ocean.

The study suggests that even a 2-degree Celsius warming of the ocean in regions beyond the tropics can raise ocean surface and subsurface temperatures in the tropics by as much as 1 degree Celsius as less warm air flows out of the tropics and warm, extratropical water is channeled toward the equator by the oceanic tunnels depicted in the study.

"That is a significant change" in temperature, says Liu. "It is fundamentally important."

The new study, says Liu, provides a missing piece of the climate puzzle. It will enable scientists to gain more insight into climate and climate change as an unknown mechanism is revealed and added to the mix of variables that researchers must grasp as they wrestle with the hugely complex problem of understanding and forecasting climate change.

"The magnitude of this influence and the relative contributions of the atmospheric bridge and oceanic tunnel have remained uncertain," Liu says. "But we have found that the extratropics exert a strong control on tropical climate. This is our first estimate of the extratropical influence on the tropics."

The Center for Climatic Research at the University of Wisconsin-Madison is a leading center of research into world climate. It is a part of the UW-Madison Gaylord Nelson Institute for Environmental Studies.

Terry Devitt | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8687

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>