Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Helps Scientists Home In On Tropical Climate Controls

22.05.2003


It has long been known that tropical climate - by redistributing vast amounts of solar energy through welling hot air and the formation of towering cumulous clouds - influences weather in other parts of the world.

It remains unclear, however, how much the tropics can be affected by higher latitudes.
Now, with the help of a sophisticated computer model, scientists at the University of Wisconsin-Madison have shown that vast atmospheric "bridges" and oceanic "tunnels," created by overturning air and water, link the high latitudes to the tropics and can warm ocean temperature near the equator.


The finding, reported in the May 13 issue of the journal Geophysical Research Letters, has implications for better understanding global and regional climate change, and is the first to identify high-latitude phenomena that significantly influence climate in the equatorial regions of the world.

The prevailing wisdom, according to Zhengyu Liu, lead author of the paper and director of UW-Madison’s Center for Climatic Research, was that climate and weather phenomena at higher latitudes tended to be static, with no far-reaching influence.

"That was the conventional thinking," he says. "But our model shows that these phenomena are equally weighted, that climate and weather at higher latitudes have as much of an influence on the tropics as tropical weather and climate influence the higher latitudes. Both are very important."

The discovery reveals a hidden climate mechanism that may be of critical importance to studies of past and future global and regional climate change, says Liu.

According to the scenario depicted by the modeling experiments conducted by Liu and colleague Haijun Yang, the heat carried via the atmospheric bridges from the tropics to higher latitudes is reduced as a result of warming climate in the higher latitudes. At the same time, warm extratropical water is funneled into the subsurface oceanic tunnels and is carried to the equator where it upwells and warms the tropical ocean.

The study suggests that even a 2-degree Celsius warming of the ocean in regions beyond the tropics can raise ocean surface and subsurface temperatures in the tropics by as much as 1 degree Celsius as less warm air flows out of the tropics and warm, extratropical water is channeled toward the equator by the oceanic tunnels depicted in the study.

"That is a significant change" in temperature, says Liu. "It is fundamentally important."

The new study, says Liu, provides a missing piece of the climate puzzle. It will enable scientists to gain more insight into climate and climate change as an unknown mechanism is revealed and added to the mix of variables that researchers must grasp as they wrestle with the hugely complex problem of understanding and forecasting climate change.

"The magnitude of this influence and the relative contributions of the atmospheric bridge and oceanic tunnel have remained uncertain," Liu says. "But we have found that the extratropics exert a strong control on tropical climate. This is our first estimate of the extratropical influence on the tropics."

The Center for Climatic Research at the University of Wisconsin-Madison is a leading center of research into world climate. It is a part of the UW-Madison Gaylord Nelson Institute for Environmental Studies.

Terry Devitt | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8687

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>