Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA finds soot has impact on global climate

21.05.2003


A team of researchers, led by NASA and Columbia University scientists, found airborne, microscopic, black- carbon (soot) particles are even more plentiful around the world, and contribute more to climate change, than was previously assumed by the Intergovernmental Panel of Climate Change (IPCC).



The researchers concluded if these soot particles are not reduced, at least as rapidly as light-colored pollutants, the world could warm more quickly.

The findings appear in the latest issue of the Proceedings of the National Academy of Sciences. It is authored by Makiko Sato, James Hansen and others from NASA’s Goddard Institute for Space Studies (GISS) and Columbia University, New York; Oleg Dubovik, Brent Holben and Mian Chin of NASA’s Goddard Space Flight Center, Greenbelt, Md.; and Tica Novakov, Lawrence Berkeley National Laboratory, Berkeley, Calif.


Sato, Hansen and colleagues used global atmospheric measurements taken by the Aerosol Robotic Network (AERONET). AERONET is a global network of more than 100 sun photometers that measure the amount of sunlight absorbed by aerosols (fine particles in the air) at wavelengths from ultraviolet to infrared. The scientists compared the AERONET data with Chin’s global-aerosol computer model and GISS climate model, both of which included sources of soot aerosols consistent with the estimates of the IPCC.

The researchers found the amount of sunlight absorbed by soot was two-to-four times larger than previously assumed. This larger absorption is due in part to the way the tiny carbon particles are incorporated inside other larger particles: absorption is increased by light rays bouncing around inside the larger particle.

According to the researchers, the larger absorption is attributable also to previous underestimates of the amount of soot in the atmosphere. The net result is soot contributes about twice as much to warming the world as had been estimated by the IPCC.

Black carbon or soot is generated from traffic, industrial pollution, outdoor fires and household burning of coal and biomass fuels. Soot is a product of incomplete combustion, especially of diesel fuels, biofuels, coal and outdoor biomass burning. Emissions are large in areas where cooking and heating are done with wood, field residue, cow dung and coal, at a low temperature that does not allow for complete combustion. The resulting soot particles absorb sunlight, just as dark pavement becomes hotter than light pavement.

Both soot and the light-colored tiny particles, most of which are sulfates, pose problems for air quality around the world. Efforts are beginning to reduce the sulfate aerosols to address air quality issues.

"There is a pitfall, however, in reducing sulfate emissions without simultaneously reducing black carbon emissions," Hansen said. Since soot is black, it absorbs heat and causes warming. Sulfate aerosols are white, reflect sunlight, and cause cooling. At present, the warming and cooling effects of the dark and light particles partially balance.

This research continues observations of global climate change. It was funded by NASA’s Earth Science Enterprise. The Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.


###

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0509pollution.html
http://aeronet.gsfc.nasa.gov/
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>