Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Climate Model Predicts Greater 21st Century Warming

20.05.2003

For the first time, scientists have incorporated multiple human and natural factors into a climate projection model. They predict that increased carbon dioxide in the atmosphere, due to changes in the carbon cycle, combined with a decrease in human-produced sulphates, may cause accelerated global warming during the 21st century, as compared with simulations without these feedback effects.

Results of the study, completed by Chris D. Jones and colleagues at the Met Office’s Hadley Centre for Climate Prediction and Research in Bracknell, United Kingdom, appear in the journal Geophysical Research Letters, published by the American Geophysical Union.

Previous studies have indicated that human activities, such as carbon dioxide and sulphate emissions, as well as natural factors, such as changes in solar radiation, emissions from volcanic eruptions and interactions between climate and the carbon cycle, are important mechanisms for causing climate change. No previous climate studies have, however, integrated all of these factors into a single climate experiment.

The climate-carbon cycle experiment completed by Jones and his colleagues is the first to take a more comprehensive Earth-systems approach to climate modeling. This "all-forcings experiment," or ALL, incorporates carbon dioxide emissions, non-carbon dioxide greenhouse gases, human-produced sulphate aerosol levels, the reflection of solar radiation associated with sulphate in the atmosphere (the "albedo effect"), atmospheric ozone levels, levels of solar radiation, the effects of volcanic eruptions, and climate-carbon cycle feedbacks.

Discrepancies between observed temperature trends in the 20th century and climate simulations that consider only a limited number of factors have hindered the ability of some models to predict future climate change. The ALL model was, however, able to recreate observed temperature records for the 20th century, illustrating the importance of including multiple factors in climate change projections. Also, the rise in carbon dioxide simulated by ALL more closely matches the observed carbon dioxide rise than did previous models. The researchers say that this indicates that mechanisms other than direct carbon dioxide emissions caused by human activity also contribute to the observed trend. Jones and his colleagues were also able to replicate estimates of the amount of carbon currently stored in the oceans and on land worldwide.

With regard to future climate predictions, ALL shows that predicted reductions in human sulphate emissions will cause a reduction in the cooling effect associated with sulphates in the atmosphere, or a net warming. The model predicts that the resultant warming will enhance soil respiration, meaning that the increased amounts of carbon stored in the soil during the 20th century will be released into the atmosphere, causing a faster rise in atmospheric carbon dioxide. By the end of the 21st century, the authors state, the increase in carbon dioxide and decrease of sulphates will cause a substantially higher global warming of 5.5 degrees Celsius [9.9 degrees Fahrenheit] compared with 4 degrees Celsius [7 degrees Fahrenheit] when these interactions are neglected.

The research was supported by the UK Department for the Environment, Food and Regional Affairs.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>