Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Climate Model Predicts Greater 21st Century Warming

20.05.2003

For the first time, scientists have incorporated multiple human and natural factors into a climate projection model. They predict that increased carbon dioxide in the atmosphere, due to changes in the carbon cycle, combined with a decrease in human-produced sulphates, may cause accelerated global warming during the 21st century, as compared with simulations without these feedback effects.

Results of the study, completed by Chris D. Jones and colleagues at the Met Office’s Hadley Centre for Climate Prediction and Research in Bracknell, United Kingdom, appear in the journal Geophysical Research Letters, published by the American Geophysical Union.

Previous studies have indicated that human activities, such as carbon dioxide and sulphate emissions, as well as natural factors, such as changes in solar radiation, emissions from volcanic eruptions and interactions between climate and the carbon cycle, are important mechanisms for causing climate change. No previous climate studies have, however, integrated all of these factors into a single climate experiment.

The climate-carbon cycle experiment completed by Jones and his colleagues is the first to take a more comprehensive Earth-systems approach to climate modeling. This "all-forcings experiment," or ALL, incorporates carbon dioxide emissions, non-carbon dioxide greenhouse gases, human-produced sulphate aerosol levels, the reflection of solar radiation associated with sulphate in the atmosphere (the "albedo effect"), atmospheric ozone levels, levels of solar radiation, the effects of volcanic eruptions, and climate-carbon cycle feedbacks.

Discrepancies between observed temperature trends in the 20th century and climate simulations that consider only a limited number of factors have hindered the ability of some models to predict future climate change. The ALL model was, however, able to recreate observed temperature records for the 20th century, illustrating the importance of including multiple factors in climate change projections. Also, the rise in carbon dioxide simulated by ALL more closely matches the observed carbon dioxide rise than did previous models. The researchers say that this indicates that mechanisms other than direct carbon dioxide emissions caused by human activity also contribute to the observed trend. Jones and his colleagues were also able to replicate estimates of the amount of carbon currently stored in the oceans and on land worldwide.

With regard to future climate predictions, ALL shows that predicted reductions in human sulphate emissions will cause a reduction in the cooling effect associated with sulphates in the atmosphere, or a net warming. The model predicts that the resultant warming will enhance soil respiration, meaning that the increased amounts of carbon stored in the soil during the 20th century will be released into the atmosphere, causing a faster rise in atmospheric carbon dioxide. By the end of the 21st century, the authors state, the increase in carbon dioxide and decrease of sulphates will cause a substantially higher global warming of 5.5 degrees Celsius [9.9 degrees Fahrenheit] compared with 4 degrees Celsius [7 degrees Fahrenheit] when these interactions are neglected.

The research was supported by the UK Department for the Environment, Food and Regional Affairs.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>