Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Climate Model Predicts Greater 21st Century Warming

20.05.2003

For the first time, scientists have incorporated multiple human and natural factors into a climate projection model. They predict that increased carbon dioxide in the atmosphere, due to changes in the carbon cycle, combined with a decrease in human-produced sulphates, may cause accelerated global warming during the 21st century, as compared with simulations without these feedback effects.

Results of the study, completed by Chris D. Jones and colleagues at the Met Office’s Hadley Centre for Climate Prediction and Research in Bracknell, United Kingdom, appear in the journal Geophysical Research Letters, published by the American Geophysical Union.

Previous studies have indicated that human activities, such as carbon dioxide and sulphate emissions, as well as natural factors, such as changes in solar radiation, emissions from volcanic eruptions and interactions between climate and the carbon cycle, are important mechanisms for causing climate change. No previous climate studies have, however, integrated all of these factors into a single climate experiment.

The climate-carbon cycle experiment completed by Jones and his colleagues is the first to take a more comprehensive Earth-systems approach to climate modeling. This "all-forcings experiment," or ALL, incorporates carbon dioxide emissions, non-carbon dioxide greenhouse gases, human-produced sulphate aerosol levels, the reflection of solar radiation associated with sulphate in the atmosphere (the "albedo effect"), atmospheric ozone levels, levels of solar radiation, the effects of volcanic eruptions, and climate-carbon cycle feedbacks.

Discrepancies between observed temperature trends in the 20th century and climate simulations that consider only a limited number of factors have hindered the ability of some models to predict future climate change. The ALL model was, however, able to recreate observed temperature records for the 20th century, illustrating the importance of including multiple factors in climate change projections. Also, the rise in carbon dioxide simulated by ALL more closely matches the observed carbon dioxide rise than did previous models. The researchers say that this indicates that mechanisms other than direct carbon dioxide emissions caused by human activity also contribute to the observed trend. Jones and his colleagues were also able to replicate estimates of the amount of carbon currently stored in the oceans and on land worldwide.

With regard to future climate predictions, ALL shows that predicted reductions in human sulphate emissions will cause a reduction in the cooling effect associated with sulphates in the atmosphere, or a net warming. The model predicts that the resultant warming will enhance soil respiration, meaning that the increased amounts of carbon stored in the soil during the 20th century will be released into the atmosphere, causing a faster rise in atmospheric carbon dioxide. By the end of the 21st century, the authors state, the increase in carbon dioxide and decrease of sulphates will cause a substantially higher global warming of 5.5 degrees Celsius [9.9 degrees Fahrenheit] compared with 4 degrees Celsius [7 degrees Fahrenheit] when these interactions are neglected.

The research was supported by the UK Department for the Environment, Food and Regional Affairs.

Harvey Leifert | AGU
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>