Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying real-time seismic activity

16.05.2003


A serendipitous discovery by a University of Colorado at Boulder-led team has shown for the first time that satellite signals from the Global Positioning System are a valuable new tool for studying seismic activity.



CU-Boulder Associate Professor Kristine Larson of aerospace engineering sciences said seismic waves from a 7.9 magnitude earthquake in Alaska’s Denali National Park in November 2002 were detected using Global Positioning Satellite, or GPS, receivers as far away as 2,350 miles from the event. The quake also was picked up by scores of GPS receivers in Canada and the United States.

GPS is a constellation of satellites originally designed by the U.S. military to provide precise positions of ships, tanks, airplanes, other military equipment and even people. Currently there are 27 GPS satellites orbiting Earth at roughly 12,500 miles above the planet.


"This is the first time GPS has been used to track seismic waves," Larson said. "The signals were large enough to be recorded by GPS receivers as far away as Colorado Springs, Colorado."

A paper on the subject will be published electronically by Science magazine on Science Express May 15. In addition to Larson, co-authors include Paul Bodin from the University of Memphis and Joan Gomberg from the U.S. Geological Survey’s Memphis office.

"The nice thing about GPS is it’s great versatility," said Larson. "In this study we were able to track seismic waves that traveled from Alaska through Canada to Washington, Montana and Colorado."

GPS also has a number of other scientific uses, like measuring ice sheet movements, the inflation of magma under volcanoes and plate tectonics, Larson said. More practical uses of GPS include navigating aircraft, boats and cars, as well as helping lost hikers find their way to safety.

GPS users -- like hikers, boaters and car drivers -- decide how frequently their position determination is needed. For measuring seismic waves from Denali, Larson’s team used GPS receivers that were set to measure positions once each second, or 1 Hertz.

Ordinarily, she said, scientists study earthquakes with seismometers, but these often are set for a particular sensitivity range. Because the earthquake in Alaska was so big, however, many seismometers in the United States and Canada were not able to measure it.

"But GPS researchers love very big signals," Larson said. "The bigger the better for us."

The Denali quake ruptured almost 200 miles, causing surface displacements of more than 25 feet in some places, she said. "This is permanent deformation. The deformations we observed with GPS in the lower 48 states also were large, but were caused by the seismic waves and did not cause permanent displacement."

For a sense of how big the seismic waves were, a GPS receiver in eastern Washington moved nine inches horizontally in just 10 seconds, even though it was 1,500 miles from the Denali earthquake.

There are many continuously operating GPS receivers in the United States, she said, and scientists use them primarily to monitor small motions on faults. Roughly 250 GPS receivers are operating in Los Angeles County, for example, installed in response to the 6.7 magnitude Northridge earthquake in 1994.

The National Science Foundation and Congress recently funded a research project known as Earthscope to study the structure and evolution of the North American continent, Larson said.

Earthscope also is designed to decipher what causes earthquakes and volcanic eruptions and as part of that effort, Earthscope engineers will soon be installing 800 additional GPS receivers in the western United States.


###
Contact:Kristine Larson, (303) 492-6583
Kristine.Larson@colorado.edu
Jim Scott, (303) 492-3114


Kristine Larson | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>