Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic probe for rocks, recordings, nanotechnology

15.05.2003


A technique for studying the magnetic properties of rocks developed by earth scientists at UC Davis is drawing attention from other scientists and the magnetic recording industry.



An international group of scientists recently met in Davis to discuss the First Order Reversal Curve (FORC) method and its applications for studying million-year old rocks, thousand-year old lake sediments, modern hard drives and wholly new kinds of materials made in the lab.

Magnetic materials are made up of grains that act as tiny magnets. The size and orientation of these grains determines the magnetic properties of the whole material. Magnetic tapes and hard drives use those magnetic grains to store information.


The FORC method involves subjecting materials to a series of switching magnetic fields. How they respond gives information about the size, orientation and behavior of magnetic grains in the material.

Rocks store magnetic information for millions of years, said UC Davis geophysicist Ken Verosub, who with physicist Christopher Pike and geologist Andrew Roberts (now at the University of Southampton, England) originally developed the method.

Grains in rocks are magnetized by the Earth’s magnetic field. When the Earth’s field changes, some of the grains may change orientation, Verosub said. On a more recent timescale, changes in climate over thousands of years leave magnetic traces in the sediment on the floor of ancient lakes and seas.

FORC helps geologists understand how these magnetic signals are recorded in rocks and sediments. It also provides information about magnetic interactions between grains which could be useful for developing better hard drives and magnetic storage devices.

Verosub and Pike have joined with physicists Kai Liu, Richard Scalettar and Gergely Zimanyi to explore these new applications of the method. Scalettar, Zimanyi and Pike are using simulations and computer modeling to investigate the underlying physics behind the method.

Liu uses FORC to study novel materials, called nanomaterials because they are made up of extremely small layers, dots or other structures, that he makes in the lab. Such materials have novel properties compared to bulk materials because of their extremely small dimensions.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>