Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Release of Sea-Floor Methane Caused Extreme Global Warming 55 Million Years Ago

13.05.2003


Scientists have just returned from two months at sea aboard the oceanographic drill ship JOIDES Resolution where they studied the effects of a larger than expected methane release 55 million years ago that may have caused extreme global warming.



In March, the scientists traveled to a site near Walvis Ridge — an ancient submarine mountain chain off Africa—as part of the NSF-supported Ocean Drilling Program (ODP) Leg 208. The researchers searched for evidence of roughly 2,000 gigatons of methane they believe escaped into the ocean and atmosphere to cause the Paleocene-Eocene Thermal Maximum, an extreme global warming event that is unique in Earth history in both magnitude and rate of warming.

Sediments far below the seafloor hold clues to the cause of this warming. Evidence for the dissolution of methane was recorded in debris that settled, layer by layer, on the ocean floor over thousands of years.


Cores of sediment brought up from the study site suggested a significant amount of methane dissolution, said ODP scientist Jim Zachos of the University of California at Santa Cruz, perhaps twice the original estimate.

"It far exceeds what has been estimated by models, assuming a release of 2,000 gigatons of methane," added Dick Kroon of Vrije Universiteit Amsterdam, a fellow researcher aboard JOIDES Resolution.

The initial results also suggest that Earth’s recovery to a "normal state" took as long as 100,000 years.

Geochemists speculate that the methane escaped from sea-floor clathrates, methane-trapping ice-crystals that are distributed in sediments on the outer edges of continental margins worldwide. For reasons that remain unknown, the clathrates suddenly began to decompose on a massive scale at the time of the Paleocene-Eocene Thermal Maximum, increasing the amount of methane in the atmosphere and oceans.

The rapid release of so much methane, and the methane’s oxidation to carbon dioxide, would have significantly altered ocean chemistry, and ultimately the atmosphere and global climate. The process appears to have lasted for a period of 40,000 years, scientists say, warming Earth by more than five degrees Celsius.

"We suspect the melting of clathrates and subsequent rapid release of methane was initiated by a gradual warming that pushed the climate system across a threshold," said Zachos. Once started, the release of methane and the resultant warming likely fueled the release of more methane, a phenomenon of concern for future global climate change, he added.

ODP is an international partnership of scientists and research institutions organized to study the evolution and structure of the Earth. It is funded by NSF with substantial contributions from international partners.

NSF Science Expert: Bruce Malfait, bmalfait@nsf.gov

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030512.htm

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>