Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Release of Sea-Floor Methane Caused Extreme Global Warming 55 Million Years Ago

13.05.2003


Scientists have just returned from two months at sea aboard the oceanographic drill ship JOIDES Resolution where they studied the effects of a larger than expected methane release 55 million years ago that may have caused extreme global warming.



In March, the scientists traveled to a site near Walvis Ridge — an ancient submarine mountain chain off Africa—as part of the NSF-supported Ocean Drilling Program (ODP) Leg 208. The researchers searched for evidence of roughly 2,000 gigatons of methane they believe escaped into the ocean and atmosphere to cause the Paleocene-Eocene Thermal Maximum, an extreme global warming event that is unique in Earth history in both magnitude and rate of warming.

Sediments far below the seafloor hold clues to the cause of this warming. Evidence for the dissolution of methane was recorded in debris that settled, layer by layer, on the ocean floor over thousands of years.


Cores of sediment brought up from the study site suggested a significant amount of methane dissolution, said ODP scientist Jim Zachos of the University of California at Santa Cruz, perhaps twice the original estimate.

"It far exceeds what has been estimated by models, assuming a release of 2,000 gigatons of methane," added Dick Kroon of Vrije Universiteit Amsterdam, a fellow researcher aboard JOIDES Resolution.

The initial results also suggest that Earth’s recovery to a "normal state" took as long as 100,000 years.

Geochemists speculate that the methane escaped from sea-floor clathrates, methane-trapping ice-crystals that are distributed in sediments on the outer edges of continental margins worldwide. For reasons that remain unknown, the clathrates suddenly began to decompose on a massive scale at the time of the Paleocene-Eocene Thermal Maximum, increasing the amount of methane in the atmosphere and oceans.

The rapid release of so much methane, and the methane’s oxidation to carbon dioxide, would have significantly altered ocean chemistry, and ultimately the atmosphere and global climate. The process appears to have lasted for a period of 40,000 years, scientists say, warming Earth by more than five degrees Celsius.

"We suspect the melting of clathrates and subsequent rapid release of methane was initiated by a gradual warming that pushed the climate system across a threshold," said Zachos. Once started, the release of methane and the resultant warming likely fueled the release of more methane, a phenomenon of concern for future global climate change, he added.

ODP is an international partnership of scientists and research institutions organized to study the evolution and structure of the Earth. It is funded by NSF with substantial contributions from international partners.

NSF Science Expert: Bruce Malfait, bmalfait@nsf.gov

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030512.htm

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>