Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricanes at the Equator: "Impossible Perfect Storm" Observed

13.05.2003


Hurricanes cannot form near the equator, or so meteorology textbooks maintain. But a storm named Typhoon Vamei upended scientists’ thinking when it swirled above the equator in the South China Sea near Singapore on December 27, 2001. It formed so close to the equator that its winds howled in both hemispheres.


The Modis satellite image shows Typhoon Vamei at 1.5 degrees North near Singapore on December 27, 2001, with circulation on both sides of the equator. The land areas are the Malay Peninsula and Sumatra to the west of the typhoon, and Borneo to the east.
Satellite Image Credit: CRISP/National University of Singapore



New research funded by the National Science Foundation (NSF) and the U.S. Navy’s Office of Naval Research reveals the unusual mechanism for the birth of such a storm.

Intense thunderstorms over expanses of warm ocean water roil the atmosphere. Earth’s rotation spins these storms through the Coriolis Effect, a deflection that results in storms whirling counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere.


The quiescent region for this force (much like the "eye" of a hurricane) is at the equator, so researchers once believed nascent storms in this region could not build the power to start spinning. Before Typhoon Vamei (hurricanes are called typhoons when they form over the Pacific Ocean), no hurricane in recorded history had formed within 200 miles of the equator.

"Typhoon Vamei happened because of two interacting systems, a weak circulation that formed over Borneo and drifted into the southern tip of the South China Sea and remained there, and a strong and persistent northeast wind surge that turned as it crossed the equator and created a large background rotation," explained NSF-awardee C.P. Chang, a meteorologist at the Naval Postgraduate School in Monterey, Calif. Chang collaborated with meteorologists C.H. Liu from the Chinese Culture University and H.C. Kuo from the National Taiwan University, both sponsored by Taiwan’s National Science Council.

"The mechanism we identified raises additional questions," remarked Chang. "Both the wind surge and the Borneo thunderstorms are common features of the winter monsoon. Why was an equatorial cyclone not observed before?"

From analyses of weather model and satellite data, the researchers found that the land-sea terrain in the equatorial South China Sea, while necessary for strengthening and turning the cross-equatorial wind surge, also places a time constraint on the confluence of events that occurred in December of 2001. Nonetheless, Vamei still wreaked havoc: U.S. Navy ships were damaged by the typhoon, and the southern Malay Peninsula was flooded by storm surges from its 87-mile-per-hour winds.

"When something like this happens—intense background winds wrapping around a weak disturbance that lingers over warm ocean waters—and that vortex starts to spin with no help from Earth’s rotation, unlikely factors have come together," said Chang. "What you have then is just about ’the perfect storm.’ The probability of a similar equatorial development is estimated to be once every 100 to 400 years, and it probably cannot happen outside the southern South China Sea."


NSF Science Expert: Pam Stephens, pstephen@nsf.gov
NSF Principal Investigator: C. P. Chang, cpchang@nps.navy.mil

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030512.htm

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>