Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricanes at the Equator: "Impossible Perfect Storm" Observed

13.05.2003


Hurricanes cannot form near the equator, or so meteorology textbooks maintain. But a storm named Typhoon Vamei upended scientists’ thinking when it swirled above the equator in the South China Sea near Singapore on December 27, 2001. It formed so close to the equator that its winds howled in both hemispheres.


The Modis satellite image shows Typhoon Vamei at 1.5 degrees North near Singapore on December 27, 2001, with circulation on both sides of the equator. The land areas are the Malay Peninsula and Sumatra to the west of the typhoon, and Borneo to the east.
Satellite Image Credit: CRISP/National University of Singapore



New research funded by the National Science Foundation (NSF) and the U.S. Navy’s Office of Naval Research reveals the unusual mechanism for the birth of such a storm.

Intense thunderstorms over expanses of warm ocean water roil the atmosphere. Earth’s rotation spins these storms through the Coriolis Effect, a deflection that results in storms whirling counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere.


The quiescent region for this force (much like the "eye" of a hurricane) is at the equator, so researchers once believed nascent storms in this region could not build the power to start spinning. Before Typhoon Vamei (hurricanes are called typhoons when they form over the Pacific Ocean), no hurricane in recorded history had formed within 200 miles of the equator.

"Typhoon Vamei happened because of two interacting systems, a weak circulation that formed over Borneo and drifted into the southern tip of the South China Sea and remained there, and a strong and persistent northeast wind surge that turned as it crossed the equator and created a large background rotation," explained NSF-awardee C.P. Chang, a meteorologist at the Naval Postgraduate School in Monterey, Calif. Chang collaborated with meteorologists C.H. Liu from the Chinese Culture University and H.C. Kuo from the National Taiwan University, both sponsored by Taiwan’s National Science Council.

"The mechanism we identified raises additional questions," remarked Chang. "Both the wind surge and the Borneo thunderstorms are common features of the winter monsoon. Why was an equatorial cyclone not observed before?"

From analyses of weather model and satellite data, the researchers found that the land-sea terrain in the equatorial South China Sea, while necessary for strengthening and turning the cross-equatorial wind surge, also places a time constraint on the confluence of events that occurred in December of 2001. Nonetheless, Vamei still wreaked havoc: U.S. Navy ships were damaged by the typhoon, and the southern Malay Peninsula was flooded by storm surges from its 87-mile-per-hour winds.

"When something like this happens—intense background winds wrapping around a weak disturbance that lingers over warm ocean waters—and that vortex starts to spin with no help from Earth’s rotation, unlikely factors have come together," said Chang. "What you have then is just about ’the perfect storm.’ The probability of a similar equatorial development is estimated to be once every 100 to 400 years, and it probably cannot happen outside the southern South China Sea."


NSF Science Expert: Pam Stephens, pstephen@nsf.gov
NSF Principal Investigator: C. P. Chang, cpchang@nps.navy.mil

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030512.htm

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>