Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites rained on Earth after massive asteroid breakup

09.05.2003


Geologists find meteorites 100 times more common in wake of ancient asteroid collision



Using fossil meteorites and ancient limestone unearthed throughout southern Sweden, marine geologists at Rice University have discovered that a colossal collision in the asteroid belt some 500 million years ago led to intense meteorite strikes over the Earth’s surface.

The research, which appears in this week’s issue of Science magazine, is based upon an analysis of fossil meteorites and limestone samples from five Swedish quarries located as much as 310 miles (500 km.) apart. The limestone formed from sea bottom sediments during a 2 million-year span about 480 million years ago, sealing the intact meteorites, as well as trace minerals from disintegrated meteorites, in a lithographic time capsule.


"What we are doing is astronomy, but instead of looking up at the stars, we are looking down into the Earth," said lead researcher Birger Schmitz, who conducted his analysis during his tenure as the Wiess Visiting Professor of Earth Science at Rice. Schmitz is professor of marine geology at Göteborg University in Sweden.

Meteorite activity on earth is relatively uniform today, with an average of about one meteorite per year falling every 7,700 square miles (12,500 sq. km.). The new study found a 100-fold increase in meteorite activity during the period when the limestone was forming, a level of activity that was present over the entire 150,000-square-mile (250,000 sq. km.) search area.

Some 20 percent of the meteorites landing on Earth today are remnants of a very large asteroid that planetary scientists refer to as the "L-chondrite parent body." This asteroid broke apart around 500 million years ago in what scientists believe is the largest collision that occurred in late solar system history.

Schmitz and his colleagues looked for unique extraterrestrial forms of the mineral chromite that are found only in meteorites from the L-chondrite breakup. They found that all the intact fossil meteorites in the Swedish limestone came from the breakup. Moreover, they found matching concentrations of silt and sand-sized grains of extraterrestrial chromite in limestone from all five quarries, indicating that meteorite activity following the breakup was occurring at the same rate over the entire area.

The research helps explain why Schmitz and his colleagues at Göteborg have been able to collect so many fossilized meteorites from a single quarry near Kinnekulle, Sweden over the past decade. Fossil meteorites embedded in stratified rock are extremely rare. Only 55 have ever been recovered, and Schmitz’s group found 50 of those.

"It is true that we are lucky to be looking in just the right place -- a layer of lithified sediments that was forming on the sea floor immediately after this massive collision," said Schmitz. "But on the other hand, we would never have started looking there in the first place if the quarry workers hadn’t been finding the meteorites on a regular, yet still rare, basis."

Until Schmitz’s group started working with the quarry crew, the fossilized meteorites were discarded because they blemish the finished limestone. Schmitz believes it’s possible that similar concentrations of fossilized meteorites and extraterrestrial chromite grains are present worldwide in limestone that formed during the period following the asteroid breakup. He recently got funding to look for evidence of this in China, and he said there are South American sites that are also favorable.


The research was sponsored by the National Geographic Society and the Swedish Research Council.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>