Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites rained on Earth after massive asteroid breakup

09.05.2003


Geologists find meteorites 100 times more common in wake of ancient asteroid collision



Using fossil meteorites and ancient limestone unearthed throughout southern Sweden, marine geologists at Rice University have discovered that a colossal collision in the asteroid belt some 500 million years ago led to intense meteorite strikes over the Earth’s surface.

The research, which appears in this week’s issue of Science magazine, is based upon an analysis of fossil meteorites and limestone samples from five Swedish quarries located as much as 310 miles (500 km.) apart. The limestone formed from sea bottom sediments during a 2 million-year span about 480 million years ago, sealing the intact meteorites, as well as trace minerals from disintegrated meteorites, in a lithographic time capsule.


"What we are doing is astronomy, but instead of looking up at the stars, we are looking down into the Earth," said lead researcher Birger Schmitz, who conducted his analysis during his tenure as the Wiess Visiting Professor of Earth Science at Rice. Schmitz is professor of marine geology at Göteborg University in Sweden.

Meteorite activity on earth is relatively uniform today, with an average of about one meteorite per year falling every 7,700 square miles (12,500 sq. km.). The new study found a 100-fold increase in meteorite activity during the period when the limestone was forming, a level of activity that was present over the entire 150,000-square-mile (250,000 sq. km.) search area.

Some 20 percent of the meteorites landing on Earth today are remnants of a very large asteroid that planetary scientists refer to as the "L-chondrite parent body." This asteroid broke apart around 500 million years ago in what scientists believe is the largest collision that occurred in late solar system history.

Schmitz and his colleagues looked for unique extraterrestrial forms of the mineral chromite that are found only in meteorites from the L-chondrite breakup. They found that all the intact fossil meteorites in the Swedish limestone came from the breakup. Moreover, they found matching concentrations of silt and sand-sized grains of extraterrestrial chromite in limestone from all five quarries, indicating that meteorite activity following the breakup was occurring at the same rate over the entire area.

The research helps explain why Schmitz and his colleagues at Göteborg have been able to collect so many fossilized meteorites from a single quarry near Kinnekulle, Sweden over the past decade. Fossil meteorites embedded in stratified rock are extremely rare. Only 55 have ever been recovered, and Schmitz’s group found 50 of those.

"It is true that we are lucky to be looking in just the right place -- a layer of lithified sediments that was forming on the sea floor immediately after this massive collision," said Schmitz. "But on the other hand, we would never have started looking there in the first place if the quarry workers hadn’t been finding the meteorites on a regular, yet still rare, basis."

Until Schmitz’s group started working with the quarry crew, the fossilized meteorites were discarded because they blemish the finished limestone. Schmitz believes it’s possible that similar concentrations of fossilized meteorites and extraterrestrial chromite grains are present worldwide in limestone that formed during the period following the asteroid breakup. He recently got funding to look for evidence of this in China, and he said there are South American sites that are also favorable.


The research was sponsored by the National Geographic Society and the Swedish Research Council.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Earth Sciences:

nachricht New Technique for Finding Weakness in Earth’s Crust
30.09.2016 | University of Adelaide

nachricht Researcher creates a controlled rogue wave in realistic oceanic conditions
30.09.2016 | Aalto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>