Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites rained on Earth after massive asteroid breakup

09.05.2003


Geologists find meteorites 100 times more common in wake of ancient asteroid collision



Using fossil meteorites and ancient limestone unearthed throughout southern Sweden, marine geologists at Rice University have discovered that a colossal collision in the asteroid belt some 500 million years ago led to intense meteorite strikes over the Earth’s surface.

The research, which appears in this week’s issue of Science magazine, is based upon an analysis of fossil meteorites and limestone samples from five Swedish quarries located as much as 310 miles (500 km.) apart. The limestone formed from sea bottom sediments during a 2 million-year span about 480 million years ago, sealing the intact meteorites, as well as trace minerals from disintegrated meteorites, in a lithographic time capsule.


"What we are doing is astronomy, but instead of looking up at the stars, we are looking down into the Earth," said lead researcher Birger Schmitz, who conducted his analysis during his tenure as the Wiess Visiting Professor of Earth Science at Rice. Schmitz is professor of marine geology at Göteborg University in Sweden.

Meteorite activity on earth is relatively uniform today, with an average of about one meteorite per year falling every 7,700 square miles (12,500 sq. km.). The new study found a 100-fold increase in meteorite activity during the period when the limestone was forming, a level of activity that was present over the entire 150,000-square-mile (250,000 sq. km.) search area.

Some 20 percent of the meteorites landing on Earth today are remnants of a very large asteroid that planetary scientists refer to as the "L-chondrite parent body." This asteroid broke apart around 500 million years ago in what scientists believe is the largest collision that occurred in late solar system history.

Schmitz and his colleagues looked for unique extraterrestrial forms of the mineral chromite that are found only in meteorites from the L-chondrite breakup. They found that all the intact fossil meteorites in the Swedish limestone came from the breakup. Moreover, they found matching concentrations of silt and sand-sized grains of extraterrestrial chromite in limestone from all five quarries, indicating that meteorite activity following the breakup was occurring at the same rate over the entire area.

The research helps explain why Schmitz and his colleagues at Göteborg have been able to collect so many fossilized meteorites from a single quarry near Kinnekulle, Sweden over the past decade. Fossil meteorites embedded in stratified rock are extremely rare. Only 55 have ever been recovered, and Schmitz’s group found 50 of those.

"It is true that we are lucky to be looking in just the right place -- a layer of lithified sediments that was forming on the sea floor immediately after this massive collision," said Schmitz. "But on the other hand, we would never have started looking there in the first place if the quarry workers hadn’t been finding the meteorites on a regular, yet still rare, basis."

Until Schmitz’s group started working with the quarry crew, the fossilized meteorites were discarded because they blemish the finished limestone. Schmitz believes it’s possible that similar concentrations of fossilized meteorites and extraterrestrial chromite grains are present worldwide in limestone that formed during the period following the asteroid breakup. He recently got funding to look for evidence of this in China, and he said there are South American sites that are also favorable.


The research was sponsored by the National Geographic Society and the Swedish Research Council.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>